ﻻ يوجد ملخص باللغة العربية
A new experimental platform based on laser-plasma interaction is proposed to explore the fundamental processes of wave coupling at the origin of interplanetary radio emissions. It is applied to the study of electromagnetic (EM) emission at twice the plasma frequency ($2omega_p$) observed during solar bursts and thought to result from the coalescence of two Langmuir waves (LWs). In the interplanetary medium, the first LW is excited by electron beams, while the second is generated by electrostatic decay of Langmuir waves. In the present experiment, instead of an electron beam, an energetic laser propagating through a plasma excites the primary LW, with characteristics close to those at near-Earth orbit. The EM radiation at $2omega_p$ is observed at different angles. Its intensity, spectral evolution and polarization confirm the LW-coalescence scenario.
We present the results of 3-dimensional kinetic simulations and theoretical studies on the formation and evolution of the current sheet in a collisionless plasma during magnetic field annihilation in the ultra-relativistic limit. Annihilation of oppo
We demonstrate that laser reflection acts as a catalyst for superponderomotive electron production in the preplasma formed by relativistic multipicosecond lasers incident on solid density targets. In 1D particle-in-cell simulations, high energy elect
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist
The strong-coupling mode, called quasimode, will be excited by stimulated Brillouin scattering (SBS) in high-intensity laser-plasma interaction. And SBS of quasimode will compete with SBS of fast mode (or slow mode) in multi-ion species plasmas, thus
Ion acceleration driven by superintense laser pulses is attracting an impressive and steadily increasing effort. Motivations can be found in the potential for a number of foreseen applications and in the perspective to investigate novel regimes as fa