ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Optimize Autonomy in Competence-Aware Systems

323   0   0.0 ( 0 )
 نشر من قبل Connor Basich
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Interest in semi-autonomous systems (SAS) is growing rapidly as a paradigm to deploy autonomous systems in domains that require occasional reliance on humans. This paradigm allows service robots or autonomous vehicles to operate at varying levels of autonomy and offer safety in situations that require human judgment. We propose an introspective model of autonomy that is learned and updated online through experience and dictates the extent to which the agent can act autonomously in any given situation. We define a competence-aware system (CAS) that explicitly models its own proficiency at different levels of autonomy and the available human feedback. A CAS learns to adjust its level of autonomy based on experience to maximize overall efficiency, factoring in the cost of human assistance. We analyze the convergence properties of CAS and provide experimental results for robot delivery and autonomous driving domains that demonstrate the benefits of the approach.



قيم البحث

اقرأ أيضاً

71 - Connor Basich 2020
Given the complexity of real-world, unstructured domains, it is often impossible or impractical to design models that include every feature needed to handle all possible scenarios that an autonomous system may encounter. For an autonomous system to b e reliable in such domains, it should have the ability to improve its competence online. In this paper, we propose a method for improving the competence of a system over the course of its deployment. We specifically focus on a class of semi-autonomous systems known as competence-aware systems that model their own competence -- the optimal extent of autonomy to use in any given situation -- and learn this competence over time from feedback received through interactions with a human authority. Our method exploits such feedback to identify important state features missing from the systems initial model, and incorporates them into its state representation. The result is an agent that better predicts human involvement, leading to improvements in its competence and reliability, and as a result, its overall performance.
The rapid development of autonomous vehicles (AVs) holds vast potential for transportation systems through improved safety, efficiency, and access to mobility. However, due to numerous technical, political, and human factors challenges, new methodolo gies are needed to design vehicles and transportation systems for these positive outcomes. This article tackles technical challenges arising from the partial adoption of autonomy: partial control, partial observation, complex multi-vehicle interactions, and the sheer variety of traffic settings represented by real-world networks. The article presents a modular learning framework which leverages deep Reinforcement Learning methods to address complex traffic dynamics. Modules are composed to capture common traffic phenomena (traffic jams, lane changing, intersections). Learned control laws are found to exceed human driving performance by at least 40% with only 5-10% adoption of AVs. In partially-observed single-lane traffic, a small neural network control law can eliminate stop-and-go traffic -- surpassing all known model-based controllers, achieving near-optimal performance, and generalizing to out-of-distribution traffic densities.
540 - Amir Husain 2017
This paper covers a number of approaches that leverage Artificial Intelligence algorithms and techniques to aid Unmanned Combat Aerial Vehicle (UCAV) autonomy. An analysis of current approaches to autonomous control is provided followed by an explora tion of how these techniques can be extended and enriched with AI techniques including Artificial Neural Networks (ANN), Ensembling and Reinforcement Learning (RL) to evolve control strategies for UCAVs.
The Dynamic Pickup and Delivery Problem (DPDP) is aimed at dynamically scheduling vehicles among multiple sites in order to minimize the cost when delivery orders are not known a priori. Although DPDP plays an important role in modern logistics and s upply chain management, state-of-the-art DPDP algorithms are still limited on their solution quality and efficiency. In practice, they fail to provide a scalable solution as the numbers of vehicles and sites become large. In this paper, we propose a data-driven approach, Spatial-Temporal Aided Double Deep Graph Network (ST-DDGN), to solve industry-scale DPDP. In our method, the delivery demands are first forecast using spatial-temporal prediction method, which guides the neural network to perceive spatial-temporal distribution of delivery demand when dispatching vehicles. Besides, the relationships of individuals such as vehicles are modelled by establishing a graph-based value function. ST-DDGN incorporates attention-based graph embedding with Double DQN (DDQN). As such, it can make the inference across vehicles more efficiently compared with traditional methods. Our method is entirely data driven and thus adaptive, i.e., the relational representation of adjacent vehicles can be learned and corrected by ST-DDGN from data periodically. We have conducted extensive experiments over real-world data to evaluate our solution. The results show that ST-DDGN reduces 11.27% number of the used vehicles and decreases 13.12% total transportation cost on average over the strong baselines, including the heuristic algorithm deployed in our UAT (User Acceptance Test) environment and a variety of vanilla DRL methods. We are due to fully deploy our solution into our online logistics system and it is estimated that millions of USD logistics cost can be saved per year.
This survey presents an overview of verification techniques for autonomous systems, with a focus on safety-critical autonomous cyber-physical systems (CPS) and subcomponents thereof. Autonomy in CPS is enabling by recent advances in artificial intell igence (AI) and machine learning (ML) through approaches such as deep neural networks (DNNs), embedded in so-called learning enabled components (LECs) that accomplish tasks from classification to control. Recently, the formal methods and formal verification community has developed methods to characterize behaviors in these LECs with eventual goals of formally verifying specifications for LECs, and this article presents a survey of many of these recent approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا