ﻻ يوجد ملخص باللغة العربية
Active matter, comprising many active agents interacting and moving in fluids or more complex environments, is a commonly occurring state of matter in biological and physical systems. By its very nature active matter systems exist in nonequilibrium states. In this paper the active agents are small Janus colloidal particles that use chemical energy provided by chemical reactions occurring on their surfaces for propulsion through a diffusiophoretic mechanism. As a result of interactions among these colloids, either directly or through fluid velocity and concentration fields, they may act collectively to form structures such as dynamic clusters. A general nonequilibrium thermodynamics framework for the description of such systems is presented that accounts for both self-diffusiophoresis and diffusiophoresis due to external concentration gradients, and is consistent with microreversibility. It predicts the existence of a reciprocal effect of diffusiophoresis back onto the reaction rate for the entire collection of colloids in the system, as well as the existence of a clustering instability that leads to nonequilibrium inhomogeneous system states.
This article summarizes some of the open questions in the field of active matter that have emerged during Active20, a nine-week program held at the Kavli Institute for Theoretical Physics (KITP) in Spring 2020. The article does not provide a review o
Conspectus: The ability to navigate in chemical gradients, called chemotaxis, is crucial for the survival of microorganisms. It allows them to find food and to escape from toxins. Many microorganisms can produce the chemicals to which they respond th
We investigate the thermodynamic properties of a Bose-Einstein condensate with negative scattering length confined in a toroidal trapping potential. By numerically solving the coupled Gross-Pitaevskii and Bogoliubov-de Gennes equations, we study the
We follow the dynamics of an ensemble of interacting self-propelled motorized particles in contact with an equilibrated thermal bath. We find that the fluctuation-dissipation relation allows for the definition of an effective temperature that is comp
Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framew