ترغب بنشر مسار تعليمي؟ اضغط هنا

The MALATANG Survey: Dense Gas and Star Formation from High Transition HCN and HCO+ maps of NGC253

76   0   0.0 ( 0 )
 نشر من قبل Xue-Jian Jiang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To study the high-transition dense-gas tracers and their relationships to the star formation of the inner $sim$ 2 kpc circumnuclear region of NGC253, we present HCN $J=4-3$ and HCO$^+ J=4-3$ maps obtained with the James Clerk Maxwell Telescope (JCMT). With the spatially resolved data, we compute the concentration indices $r_{90}/r_{50}$ for the different tracers. HCN and HCO$^+$ 4-3 emission features tend to be centrally concentrated, which is in contrast to the shallower distribution of CO 1-0 and the stellar component. The dense-gas fraction ($f_text{dense}$, traced by the velocity-integrated-intensity ratios of HCN/CO and HCO$^+$/CO) and the ratio $R_text{31}$ (CO 3-2/1-0) decline towards larger galactocentric distances, but increase with higher SFR surface density. The radial variation and the large scatter of $f_text{dense}$ and $R_text{31}$ imply distinct physical conditions in different regions of the galactic disc. The relationships of $f_text{dense}$ versus $Sigma_text{stellar}$, and SFE$_text{dense}$ versus $Sigma_text{stellar}$ are explored. SFE$_text{dense}$ increases with higher $Sigma_text{stellar}$ in this galaxy, which is inconsistent with previous work that used HCN 1-0 data. This implies that existing stellar components might have different effects on the high-$J$ HCN and HCO$^+$ than their low-$J$ emission. We also find that SFE$_text{dense}$ seems to be decreasing with higher $f_text{dense}$, which is consistent with previous works, and it suggests that the ability of the dense gas to form stars diminishes when the average density of the gas increases. This is expected in a scenario where only the regions with high-density contrast collapse and form stars.

قيم البحث

اقرأ أيضاً

Investigating star formation requires precise knowledge of the properties of the dense molecular gas. The low metallicity and wide range of star formation activity of the Large and Small Magellanic Clouds make them prime laboratories to study how loc al physical conditions impact the dense gas reservoirs. The aim of the Dense Gas Survey for the Magellanic Clouds (DeGaS-MC) project is to expand our knowledge of the relation between dense gas properties and star formation activity by targeting the LMC and SMC observed in the HCO+(2-1) and HCN(2-1) transitions. We carried out a pointing survey toward 30 LMC and SMC molecular clouds using the SEPIA180 instrument installed on the APEX telescope and a follow-up mapping campaign in 13 star-forming regions. This first paper provides line characteristic catalogs and integrated line-intensity maps of the sources. HCO+(2-1) is detected in 20 and HCN(2-1) in 8 of the 29 pointings observed. The dense gas velocity pattern follows the line-of-sight velocity field derived from the stellar population. The HCN emission is less extended than the HCO+ emission. The HCO+(2-1)/HCN(2-1) brightness temperature ratios range from 1 to 7, which is consistent with the large ratios commonly observed in low-metallicity environments. A larger number of young stellar objects are found at high HCO+ intensities and lower HCO+/HCN flux ratios, and thus toward denser lines of sight. The dense gas luminosities correlate with the star formation rate traced by the total infrared luminosity over the two orders of magnitude covered by our observations, although substantial region-to-region variations are observed.
We present HCN J=4-3 and HCO^+ J=4-3 maps of six nearby star-forming galaxies, NGC 253, NGC 1068, IC 342, M82, M83, and NGC 6946, obtained with the James Clerk Maxwell Telescope as part of the MALATANG survey. All galaxies were mapped in the central 2 arcmin $times$ 2 arcmin region at 14 arcsec (FWHM) resolution (corresponding to linear scales of ~ 0.2-1.0 kpc). The L_IR-L_dense relation, where the dense gas is traced by the HCN J=4-3 and the HCO^+ J=4-3 emission, measured in our sample of spatially-resolved galaxies is found to follow the linear correlation established globally in galaxies within the scatter. We find that the luminosity ratio, L_IR/L_dense, shows systematic variations with L_IR within individual spatially resolved galaxies, whereas the galaxy-integrated ratios vary little. A rising trend is also found between L_IR/L_dense ratio and the warm-dust temperature gauged by the 70 mu m/100 mu m flux ratio. We find the luminosity ratios of IR/HCN(4-3) and IR/HCO^+(4-3), which can be taken as a proxy for the efficiency of star formation in the dense molecular gas (SFE_dense), appears to be nearly independent of the dense-gas fraction (f_dense) for our sample of galaxies. The SFE of the total molecular gas (SFE_mol) is found to increase substantially with f_dense when combining our data with that on local (ultra)luminous infrared galaxies and high-z quasars. The mean L_HCN(4-3)/L_HCO^+(4-3) line ratio measured for the six targeted galaxies is 0.9+/-0.6. No significant correlation is found for the L_HCN(4-3)/L_HCO^+(4-3) ratio with the SFR as traced by L_IR, nor with the warm-dust temperature, for the different populations of galaxies.
81 - B. Vollmer 2016
(abridged) In this work we have a closer look at the gas content or fraction and the associated star formation rate in main sequence and starburst galaxies at z=0 and z~1-2 by applying an analytical model of galactic clumpy gas disks to samples of lo cal spiral galaxies, ULIRGs, submillimeter (smm), and high-z starforming galaxies. The model gas and dust temperatures are determined by the heating and cooling equilibrium. Dense clouds are heated by turbulent mechanical and cosmic ray heating. The molecular abundances of individual gas clouds are determined by a detailed chemical network involving the cloud lifetime, density, and temperature. Molecular line emission is calculated with an escape probability formalism. The model calculates simultaneously the total gas mass, HI/H_2 mass, the gas velocity dispersion, IR luminosity, IR spectral energy distribution, CO spectral line energy distribution (SLED), HCN(1-0), and HCO+(1-0) emission of a galaxy given its size, integrated star formation rate, stellar mass radial profile, rotation curve, and Toomre Q parameter. The model reproduces the observed CO luminosities and SLEDs of all sample galaxies within the model uncertainties (~0.3 dex). Whereas the CO emission is robust against the variation of model parameters, the HCN and HCO+ emission is sensitive to the chemistry of the interstellar medium. The CO and HCN mass-to-light conversion factors including CO-dark H_2 are given and compared to the values found in the literature. Both, the HCN and HCO+ emission trace the dense molecular gas to a factor of ~2 for the local spiral galaxies, ULIRGs and smm-galaxies. About 80% of the molecular line emission of compact starburst galaxies originates in non-selfgravitating gas clouds. The integrated Kennicutt-Schmidt law has a slope of ~1 for the local spirals, ULIRGs, and smm-galaxies, whereas the slope is 1.7 for high-z starforming galaxies.
We detect luminous emission from HCN, HCO+ and HNC 1--0 in the QSO ULIRG Mrk~231 with the IRAM Plateau de Bure Interferometer at 1.55 by 1.28 resolution. All three lines show broad line wings - which are particularly prominent for HCN. Velocities are found to be similar (750 km/s) to those found for CO 1-0. This is the first time bright HCN, HCO+ and HNC emission has been detected in a large-scale galactic outflow. We find that both the blue- and red-shifted line wings are spatially extended by at least 0.75 (700 pc) in a north-south direction. The line wings are brighter (relative to the line center intensity) in HCN than in CO 1-0 and line ratios suggest that the molecular outflow consists of dense (n>10E4 cmE-3) and clumpy gas with a high HCN abundance X(HCN)>10E-8. These properties are consistent with the molecular gas being compressed and fragmented by shocks in the outflow. Alternatively, HCN is instead pumped by mid-IR continuum, but we propose that this effect is not strong for the spatially extended outflowing gas. In addition, we find that the rotation of the main disk, in east-west direction, is also evident in the HCN, HCO+ and HNC line emission. An unexpectedly bright HC3N 10-9 line is detected inside the central 400 pc of Mrk231. This HC3N emission may emerge from a shielded, dust-enshrouded region within the inner 40-50 pc where the gas is heated to high temperatures (200 - 300 K) by the AGN.
We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, an d HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the luminosity gap between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا