ترغب بنشر مسار تعليمي؟ اضغط هنا

The EMPIRE Survey: Systematic Variations in the Dense Gas Fraction and Star Formation Efficiency from Full-Disk Mapping of M51

68   0   0.0 ( 0 )
 نشر من قبل Frank Bigiel
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results from the EMPIRE survey, an IRAM large program that is mapping tracers of high density molecular gas across the disks of nine nearby star-forming galaxies. Here, we present new maps of the 3-mm transitions of HCN, HCO+, and HNC across the whole disk of our pilot target, M51. As expected, dense gas correlates with tracers of recent star formation, filling the luminosity gap between Galactic cores and whole galaxies. In detail, we show that both the fraction of gas that is dense, f_dense traced by HCN/CO, and the rate at which dense gas forms stars, SFE_dense traced by IR/HCN, depend on environment in the galaxy. The sense of the dependence is that high surface density, high molecular gas fraction regions of the galaxy show high dense gas fractions and low dense gas star formation efficiencies. This agrees with recent results for individual pointings by Usero et al. 2015 but using unbiased whole-galaxy maps. It also agrees qualitatively with the behavior observed contrasting our own Solar Neighborhood with the central regions of the Milky Way. The sense of the trends can be explained if the dense gas fraction tracks interstellar pressure but star formation occurs only in regions of high density contrast.



قيم البحث

اقرأ أيضاً

We use the CARMA millimeter interferometer to map the Antennae Galaxies (NGC4038/39), tracing the bulk of the molecular gas via the 12CO(1-0) line and denser molecular gas via the high density transitions HCN(1-0), HCO+(1-0), CS(2-1), and HNC(1-0). W e detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified supergiant molecular clouds. We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formation efficiency (SFR/H2~IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of 6 within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in mm-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO+(1-0) emission is stronger than HCN(1-0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.
By combining two surveys covering a large fraction of the molecular material in the Galactic disk we investigate the role the spiral arms play in the star formation process. We have matched clumps identified by ATLASGAL with their parental GMCs as id entified by SEDIGISM, and use these giant molecular cloud (GMC) masses, the bolometric luminosities, and integrated clump masses obtained in a concurrent paper to estimate the dense gas fractions (DGF$_{rm gmc}=sum M_{rm clump}/M_{rm gmc}$) and the instantaneous star forming efficiencies (i.e., SFE$_{rm gmc} = sum L_{rm clump}/M_{rm gmc}$). We find that the molecular material associated with ATLASGAL clumps is concentrated in the spiral arms ($sim$60% found within $pm$10 km s$^{-1}$ of an arm). We have searched for variations in the values of these physical parameters with respect to their proximity to the spiral arms, but find no evidence for any enhancement that might be attributable to the spiral arms. The combined results from a number of similar studies based on different surveys indicate that, while spiral-arm location plays a role in cloud formation and HI to H$_2$ conversion, the subsequent star formation processes appear to depend more on local environment effects. This leads us to conclude that the enhanced star formation activity seen towards the spiral arms is the result of source crowding rather than the consequence of a any physical process.
It remains unclear what sets the efficiency with which molecular gas transforms into stars. Here we present a new VLA map of the spiral galaxy M51 in 33GHz radio continuum, an extinction-free tracer of star formation, at 3 scales (~100pc). We combine d this map with interferometric PdBI/NOEMA observations of CO(1-0) and HCN(1-0) at matched resolution for three regions in M51 (central molecular ring, northern and southern spiral arm segments). While our measurements roughly fall on the well-known correlation between total infrared and HCN luminosity, bridging the gap between Galactic and extragalactic observations, we find systematic offsets from that relation for different dynamical environments probed in M51, e.g. the southern arm segment is more quiescent due to low star formation efficiency (SFE) of the dense gas, despite having a high dense gas fraction. Combining our results with measurements from the literature at 100pc scales, we find that the SFE of the dense gas and the dense gas fraction anti-correlate and correlate, respectively, with the local stellar mass surface density. This is consistent with previous kpc-scale studies. In addition, we find a significant anti-correlation between the SFE and velocity dispersion of the dense gas. Finally, we confirm that a correlation also holds between star formation rate surface density and the dense gas fraction, but it is not stronger than the correlation with dense gas surface density. Our results are hard to reconcile with models relying on a universal gas density threshold for star formation and suggest that turbulence and galactic dynamics play a major role in setting how efficiently dense gas converts into stars.
We study the relationship between dense gas and star formation in the Antennae galaxies by comparing ALMA observations of dense gas tracers (HCN, HCO$^+$, and HNC $mathrm{J}=1-0$) to the total infrared luminosity ($mathrm{L_{TIR}}$) calculated using data from the textit{Herschel} Space Observatory and the textit{Spitzer} Space Telescope. We compare the luminosities of our SFR and gas tracers using aperture photometry and employing two methods for defining apertures. We taper the ALMA dataset to match the resolution of our $mathrm{L_{TIR}}$ maps and present new detections of dense gas emission from complexes in the overlap and western arm regions. Using OVRO CO $mathrm{J}=1-0$ data, we compare with the total molecular gas content, $mathrm{M(H_2)_{tot}}$, and calculate star formation efficiencies and dense gas mass fractions for these different regions. We derive HCN, HCO$^+$ and HNC upper limits for apertures where emission was not significantly detected, as we expect emission from dense gas should be present in most star-forming regions. The Antennae extends the linear $mathrm{L_{TIR}-L_{HCN}}$ relationship found in previous studies. The $mathrm{L_{TIR}-L_{HCN}}$ ratio varies by up to a factor of $sim$10 across different regions of the Antennae implying variations in the star formation efficiency of dense gas, with the nuclei, NGC 4038 and NGC 4039, showing the lowest SFE$_mathrm{dense}$ (0.44 and 0.70 $times10^{-8}$ yr$^{-1}$). The nuclei also exhibit the highest dense gas fractions ($sim 9.1%$ and $sim7.9%$).
We present EMPIRE, an IRAM 30-m large program that mapped $lambda = 3{-}4$ mm dense gas tracers at $sim 1{-}2,$kpc resolution across the whole star-forming disk of nine nearby, massive, spiral galaxies. We describe the EMPIRE observing and reduction strategies and show new whole-galaxy maps of HCN(1-0), HCO$^+$(1-0), HNC(1-0) and CO(1-0). We explore how the HCN-to-CO and IR-to-HCN ratios, observational proxies for the dense gas fraction and dense gas star formation efficiency, depend on host galaxy and local environment. We find that the fraction of dense gas correlates with stellar surface density, gas surface density, molecular-to-atomic gas ratio, and dynamical equilibrium pressure. In EMPIRE, the star formation rate per unit dense gas anti-correlates with these same environmental parameters. Thus, although dense gas appears abundant the central regions of many spiral galaxies, this gas appears relatively inefficient at forming stars. These results qualitatively agree with previous work on nearby galaxies and the Milky Ways Central Molecular Zone. To first order, EMPIRE demonstrates that the conditions in a galaxy disk set the gas density distribution and that the dense gas traced by HCN shows an environment-dependent relation to star formation. However, our results also show significant ($pm 0.2$ dex) galaxy-to-galaxy variations. We suggest that gas structure below the scale of our observations and dynamical effects likely also play an important role.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا