Motivation: There is a growing need to integrate mechanistic models of biological processes with computational methods in healthcare in order to improve prediction. We apply data assimilation in the context of Type 2 diabetes to understand parameters associated with the disease. Results: The data assimilation method captures how well patients improve glucose tolerance after their surgery. Data assimilation has the potential to improve phenotyping in Type 2 diabetes.
We develop a new model of insulin-glucose dynamics for forecasting blood glucose in type 1 diabetics. We augment an existing biomedical model by introducing time-varying dynamics driven by a machine learning sequence model. Our model maintains a phys
iologically plausible inductive bias and clinically interpretable parameters -- e.g., insulin sensitivity -- while inheriting the flexibility of modern pattern recognition algorithms. Critical to modeling success are the flexible, but structured representations of subject variability with a sequence model. In contrast, less constrained models like the LSTM fail to provide reliable or physiologically plausible forecasts. We conduct an extensive empirical study. We show that allowing biomedical model dynamics to vary in time improves forecasting at long time horizons, up to six hours, and produces forecasts consistent with the physiological effects of insulin and carbohydrates.
We demonstrate the ability of statistical data assimilation to identify the measurements required for accurate state and parameter estimation in an epidemiological model for the novel coronavirus disease COVID-19. Our context is an effort to inform p
olicy regarding social behavior, to mitigate strain on hospital capacity. The model unknowns are taken to be: the time-varying transmission rate, the fraction of exposed cases that require hospitalization, and the time-varying detection probabilities of new asymptomatic and symptomatic cases. In simulations, we obtain accurate estimates of undetected (that is, unmeasured) infectious populations, by measuring the detected cases together with the recovered and dead - and without assumed knowledge of the detection rates. Given a noiseless measurement of the recovered population, excellent estimates of all quantities are obtained using a temporal baseline of 101 days, with the exception of the time-varying transmission rate at times prior to the implementation of social distancing. With low noise added to the recovered population, accurate state estimates require a lengthening of the temporal baseline of measurements. Estimates of all parameters are sensitive to the contamination, highlighting the need for accurate and uniform methods of reporting. The aim of this paper is to exemplify the power of SDA to determine what properties of measurements will yield estimates of unknown parameters to a desired precision, in a model with the complexity required to capture important features of the COVID-19 pandemic.
Near real-time monitoring of outbreak transmission dynamics and evaluation of public health interventions are critical for interrupting the spread of the novel coronavirus (SARS-CoV-2) and mitigating morbidity and mortality caused by coronavirus dise
ase (COVID-19). Formulating a regional mechanistic model of SARS-CoV-2 transmission dynamics and frequently estimating parameters of this model using streaming surveillance data offers one way to accomplish data-driven decision making. For example, to detect an increase in new SARS-CoV-2 infections due to relaxation of previously implemented mitigation measures one can monitor estimates of the basic and effective reproductive numbers. However, parameter estimation can be imprecise, and sometimes even impossible, because surveillance data are noisy and not informative about all aspects of the mechanistic model, even for reasonably parsimonious epidemic models. To overcome this obstacle, at least partially, we propose a Bayesian modeling framework that integrates multiple surveillance data streams. Our model uses both COVID-19 incidence and mortality time series to estimate our model parameters. Importantly, our data generating model for incidence data takes into account changes in the total number of tests performed. We apply our Bayesian data integration method to COVID-19 surveillance data collected in Orange County, California. Our results suggest that California Department of Public Health stay-at-home order, issued on March 19, 2020, lowered the SARS-CoV-2 effective reproductive number $R_{e}$ in Orange County below 1.0, which means that the order was successful in suppressing SARS-CoV-2 infections. However, subsequent re-opening steps took place when thousands of infectious individuals remained in Orange County, so $R_{e}$ increased to approximately 1.0 by mid-June and above 1.0 by mid-July.
SARS-CoV-2 has disrupted the life of billions of people around the world since the first outbreak was officially declared in China at the beginning of 2020. Yet, important questions such as how deadly it is or its degree of spread within different co
untries remain unanswered. In this work, we exploit the `universal growth of the mortality rate with age observed in different countries since the beginning of their respective outbreaks, combined with the results of the antibody prevalence tests in the population of Spain, to unveil both unknowns. We validate these results with an analogous antibody rate survey in the canton of Geneva, Switzerland. We also argue that the official number of deaths over 70 years old is importantly underestimated in most of the countries, and we use the comparison between the official records with the number of deaths mentioning COVID-19 in the death certificates to quantify by how much. Using this information, we estimate the fatality infection ratio (IFR) for the different age segments and the fraction of the population infected in different countries assuming a uniform exposure to the virus in all age segments. We also give estimations for the non-uniform IFR using the sero-epidemiological results of Spain, showing a very similar growth of the fatality ratio with age. Only for Spain, we estimate the probability (if infected) of being identified as a case, being hospitalized or admitted in the intensive care units as function of age. In general, we observe a nearly exponential growth of the fatality ratio with age, which anticipates large differences in total IFR in countries with different demographic distributions, with numbers that range from 1.82% in Italy, to 0.62% in China or even 0.14% in middle Africa.
Segmented regression is a standard statistical procedure used to estimate the effect of a policy intervention on time series outcomes. This statistical method assumes the normality of the outcome variable, a large sample size, no autocorrelation in t
he observations, and a linear trend over time. Also, segmented regression is very sensitive to outliers. In a small sample study, if the outcome variable does not follow a Gaussian distribution, then using segmented regression to estimate the intervention effect leads to incorrect inferences. To address the small sample problem and non-normality in the outcome variable, including outliers, we describe and develop a robust statistical method to estimate the policy intervention effect in a series of longitudinal data. A simulation study is conducted to demonstrate the effect of outliers and non-normality in the outcomes by calculating the power of the test statistics with the segmented regression and the proposed robust statistical methods. Moreover, since finding the sampling distribution of the proposed robust statistic is analytically difficult, we use a nonparametric bootstrap technique to study the properties of the sampling distribution and make statistical inferences. Simulation studies show that the proposed method has more power than the standard t-test used in segmented regression analysis under the non-normality error distribution. Finally, we use the developed technique to estimate the intervention effect of the Istanbul Declaration on illegal organ activities. The robust method detected more significant effects compared to the standard method and provided shorter confidence intervals.
Jami J. Mulgrave
,Matthew E. Levine
,David J. Albers
.
(2020)
.
"Using Data Assimilation of Mechanistic Models to Estimate Glucose and Insulin Metabolism"
.
Jami Mulgrave
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا