ترغب بنشر مسار تعليمي؟ اضغط هنا

A Spatial-Temporal Attentive Network with Spatial Continuity for Trajectory Prediction

190   0   0.0 ( 0 )
 نشر من قبل Conghao Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It remains challenging to automatically predict the multi-agent trajectory due to multiple interactions including agent to agent interaction and scene to agent interaction. Although recent methods have achieved promising performance, most of them just consider spatial influence of the interactions and ignore the fact that temporal influence always accompanies spatial influence. Moreover, those methods based on scene information always require extra segmented scene images to generate multiple socially acceptable trajectories. To solve these limitations, we propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC). First, spatial-temporal attention mechanism is presented to explore the most useful and important information. Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity. Experiments are performed on the two widely used ETH-UCY datasets and demonstrate that the proposed model achieves state-of-the-art prediction accuracy and handles more complex scenarios.



قيم البحث

اقرأ أيضاً

Predicting the movement trajectories of multiple classes of road users in real-world scenarios is a challenging task due to the diverse trajectory patterns. While recent works of pedestrian trajectory prediction successfully modelled the influence of surrounding neighbours based on the relative distances, they are ineffective on multi-class trajectory prediction. This is because they ignore the impact of the implicit correlations between different types of road users on the trajectory to be predicted - for example, a nearby pedestrian has a different level of influence from a nearby car. In this paper, we propose to introduce class information into a graph convolutional neural network to better predict the trajectory of an individual. We embed the class labels of the surrounding objects into the label adjacency matrix (LAM), which is combined with the velocity-based adjacency matrix (VAM) comprised of the objects velocity, thereby generating a semantics-guided graph adjacency (SAM). SAM effectively models semantic information with trainable parameters to automatically learn the embedded label features that will contribute to the fixed velocity-based trajectory. Such information of spatial and temporal dependencies is passed to a graph convolutional and temporal convolutional network to estimate the predicted trajectory distributions. We further propose new metrics, known as Average2 Displacement Error (aADE) and Average Final Displacement Error (aFDE), that assess network accuracy more accurately. We call our framework Semantics-STGCNN. It consistently shows superior performance to the state-of-the-arts in existing and the newly proposed metrics.
Trajectory prediction is critical for applications of planning safe future movements and remains challenging even for the next few seconds in urban mixed traffic. How an agent moves is affected by the various behaviors of its neighboring agents in di fferent environments. To predict movements, we propose an end-to-end generative model named Attentive Maps Encoder Network (AMENet) that encodes the agents motion and interaction information for accurate and realistic multi-path trajectory prediction. A conditional variational auto-encoder module is trained to learn the latent space of possible future paths based on attentive dynamic maps for interaction modeling and then is used to predict multiple plausible future trajectories conditioned on the observed past trajectories. The efficacy of AMENet is validated using two public trajectory prediction benchmarks Trajnet and InD.
Predicting motion of surrounding agents is critical to real-world applications of tactical path planning for autonomous driving. Due to the complex temporal dependencies and social interactions of agents, on-line trajectory prediction is a challengin g task. With the development of attention mechanism in recent years, transformer model has been applied in natural language sequence processing first and then image processing. In this paper, we present a Spatial-Channel Transformer Network for trajectory prediction with attention functions. Instead of RNN models, we employ transformer model to capture the spatial-temporal features of agents. A channel-wise module is inserted to measure the social interaction between agents. We find that the Spatial-Channel Transformer Network achieves promising results on real-world trajectory prediction datasets on the traffic scenes.
Flow prediction (e.g., crowd flow, traffic flow) with features of spatial-temporal is increasingly investigated in AI research field. It is very challenging due to the complicated spatial dependencies between different locations and dynamic temporal dependencies among different time intervals. Although measurements of both dependencies are employed, existing methods suffer from the following two problems. First, the temporal dependencies are measured either uniformly or bias against long-term dependencies, which overlooks the distinctive impacts of short-term and long-term temporal dependencies. Second, the existing methods capture spatial and temporal dependencies independently, which wrongly assumes that the correlations between these dependencies are weak and ignores the complicated mutual influences between them. To address these issues, we propose a Spatial-Temporal Self-Attention Network (ST-SAN). As the path-length of attending long-term dependency is shorter in the self-attention mechanism, the vanishing of long-term temporal dependencies is prevented. In addition, since our model relies solely on attention mechanisms, the spatial and temporal dependencies can be simultaneously measured. Experimental results on real-world data demonstrate that, in comparison with state-of-the-art methods, our model reduces the root mean square errors by 9% in inflow prediction and 4% in outflow prediction on Taxi-NYC data, which is very significant compared to the previous improvement.
180 - Defu Cao , Jiachen Li , Hengbo Ma 2021
An effective understanding of the contextual environment and accurate motion forecasting of surrounding agents is crucial for the development of autonomous vehicles and social mobile robots. This task is challenging since the behavior of an autonomou s agent is not only affected by its own intention, but also by the static environment and surrounding dynamically interacting agents. Previous works focused on utilizing the spatial and temporal information in time domain while not sufficiently taking advantage of the cues in frequency domain. To this end, we propose a Spectral Temporal Graph Neural Network (SpecTGNN), which can capture inter-agent correlations and temporal dependency simultaneously in frequency domain in addition to time domain. SpecTGNN operates on both an agent graph with dynamic state information and an environment graph with the features extracted from context images in two streams. The model integrates graph Fourier transform, spectral graph convolution and temporal gated convolution to encode history information and forecast future trajectories. Moreover, we incorporate a multi-head spatio-temporal attention mechanism to mitigate the effect of error propagation in a long time horizon. We demonstrate the performance of SpecTGNN on two public trajectory prediction benchmark datasets, which achieves state-of-the-art performance in terms of prediction accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا