ﻻ يوجد ملخص باللغة العربية
Accelerating the inference speed of CNNs is critical to their deployment in real-world applications. Among all the pruning approaches, those implementing a sparsity learning framework have shown to be effective as they learn and prune the models in an end-to-end data-driven manner. However, these works impose the same sparsity regularization on all filters indiscriminately, which can hardly result in an optimal structure-sparse network. In this paper, we propose a Saliency-Adaptive Sparsity Learning (SASL) approach for further optimization. A novel and effective estimation of each filter, i.e., saliency, is designed, which is measured from two aspects: the importance for the prediction performance and the consumed computational resources. During sparsity learning, the regularization strength is adjusted according to the saliency, so our optimized format can better preserve the prediction performance while zeroing out more computation-heavy filters. The calculation for saliency introduces minimum overhead to the training process, which means our SASL is very efficient. During the pruning phase, in order to optimize the proposed data-dependent criterion, a hard sample mining strategy is utilized, which shows higher effectiveness and efficiency. Extensive experiments demonstrate the superior performance of our method. Notably, on ILSVRC-2012 dataset, our approach can reduce 49.7% FLOPs of ResNet-50 with very negligible 0.39% top-1 and 0.05% top-5 accuracy degradation.
Quantization is spearheading the increase in performance and efficiency of neural network computing systems making headway into commodity hardware. We present SWIS - Shared Weight bIt Sparsity, a quantization framework for efficient neural network in
Deepening and widening convolutional neural networks (CNNs) significantly increases the number of trainable weight parameters by adding more convolutional layers and feature maps per layer, respectively. By imposing inter- and intra-group sparsity on
Crack is one of the most common road distresses which may pose road safety hazards. Generally, crack detection is performed by either certified inspectors or structural engineers. This task is, however, time-consuming, subjective and labor-intensive.
Learning algorithms have shown considerable prowess in simulation by allowing robots to adapt to uncertain environments and improve their performance. However, such algorithms are rarely used in practice on safety-critical systems, since the learned
Deep Convolutional Neural Networks (CNN) enforces supervised information only at the output layer, and hidden layers are trained by back propagating the prediction error from the output layer without explicit supervision. We propose a supervised feat