ترغب بنشر مسار تعليمي؟ اضغط هنا

Convolutional Kernel Networks for Graph-Structured Data

203   0   0.0 ( 0 )
 نشر من قبل Dexiong Chen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a family of multilayer graph kernels and establish new links between graph convolutional neural networks and kernel methods. Our approach generalizes convolutional kernel networks to graph-structured data, by representing graphs as a sequence of kernel feature maps, where each node carries information about local graph substructures. On the one hand, the kernel point of view offers an unsupervised, expressive, and easy-to-regularize data representation, which is useful when limited samples are available. On the other hand, our model can also be trained end-to-end on large-scale data, leading to new types of graph convolutional neural networks. We show that our method achieves competitive performance on several graph classification benchmarks, while offering simple model interpretation. Our code is freely available at https://github.com/claying/GCKN.

قيم البحث

اقرأ أيضاً

This paper introduces a generalization of Convolutional Neural Networks (CNNs) from low-dimensional grid data, such as images, to graph-structured data. We propose a novel spatial convolution utilizing a random walk to uncover the relations within th e input, analogous to the way the standard convolution uses the spatial neighborhood of a pixel on the grid. The convolution has an intuitive interpretation, is efficient and scalable and can also be used on data with varying graph structure. Furthermore, this generalization can be applied to many standard regression or classification problems, by learning the the underlying graph. We empirically demonstrate the performance of the proposed CNN on MNIST, and challenge the state-of-the-art on Merck molecular activity data set.
Neural networks have achieved remarkable successes in machine learning tasks. This has recently been extended to graph learning using neural networks. However, there is limited theoretical work in understanding how and when they perform well, especia lly relative to established statistical learning techniques such as spectral embedding. In this short paper, we present a simple generative model where unsupervised graph convolutional network fails, while the adjacency spectral embedding succeeds. Specifically, unsupervised graph convolutional network is unable to look beyond the first eigenvector in certain approximately regular graphs, thus missing inference signals in non-leading eigenvectors. The phenomenon is demonstrated by visual illustrations and comprehensive simulations.
199 - Julien Mairal 2014
An important goal in visual recognition is to devise image representations that are invariant to particular transformations. In this paper, we address this goal with a new type of convolutional neural network (CNN) whose invariance is encoded by a re producing kernel. Unlike traditional approaches where neural networks are learned either to represent data or for solving a classification task, our network learns to approximate the kernel feature map on training data. Such an approach enjoys several benefits over classical ones. First, by teaching CNNs to be invariant, we obtain simple network architectures that achieve a similar accuracy to more complex ones, while being easy to train and robust to overfitting. Second, we bridge a gap between the neural network literature and kernels, which are natural tools to model invariance. We evaluate our methodology on visual recognition tasks where CNNs have proven to perform well, e.g., digit recognition with the MNIST dataset, and the more challenging CIFAR-10 and STL-10 datasets, where our accuracy is competitive with the state of the art.
Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network t o learn a dynamic and adaptive aggregation of the neighborhood. We propose a new GCN model on the graphs where edges are characterized in multiple views or precisely in terms of multiple relationships. For instance, in chemical graph theory, compound structures are often represented by the hydrogen-depleted molecular graph where nodes correspond to atoms and edges correspond to chemical bonds. Multiple attributes can be important to characterize chemical bonds, such as atom pair (the types of atoms that a bond connects), aromaticity, and whether a bond is in a ring. The different attributes lead to different graph representations for the same molecule. There is growing interests in both chemistry and machine learning fields to directly learn molecular properties of compounds from the molecular graph, instead of from fingerprints predefined by chemists. The proposed GCN model, which we call edge attention-based multi-relational GCN (EAGCN), jointly learns attention weights and node features in graph convolution. For each bond attribute, a real-valued attention matrix is used to replace the binary adjacency matrix. By designing a dictionary for the edge attention, and forming the attention matrix of each molecule by looking up the dictionary, the EAGCN exploits correspondence between bonds in different molecules. The prediction of compound properties is based on the aggregated node features, which is independent of the varying molecule (graph) size. We demonstrate the efficacy of the EAGCN on multiple chemical datasets: Tox21, HIV, Freesolv, and Lipophilicity, and interpret the resultant attention weights.
Substring kernels are classical tools for representing biological sequences or text. However, when large amounts of annotated data are available, models that allow end-to-end training such as neural networks are often preferred. Links between recurre nt neural networks (RNNs) and substring kernels have recently been drawn, by formally showing that RNNs with specific activation functions were points in a reproducing kernel Hilbert space (RKHS). In this paper, we revisit this link by generalizing convolutional kernel networks---originally related to a relaxation of the mismatch kernel---to model gaps in sequences. It results in a new type of recurrent neural network which can be trained end-to-end with backpropagation, or without supervision by using kernel approximation techniques. We experimentally show that our approach is well suited to biological sequences, where it outperforms existing methods for protein classification tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا