ﻻ يوجد ملخص باللغة العربية
We study a many-server queueing model with server vacations, where the population size dynamics of servers and customers are coupled: a server may leave for vacation only when no customers await, and the capacity available to customers is directly affected by the number of servers on vacation. We focus on scaling regimes in which server dynamics and queue dynamics fluctuate at matching time scales, so that their limiting dynamics are coupled. Specifically, we argue that interesting coupled dynamics occur in (a) the Halfin-Whitt regime, (b) the nondegenerate slowdown regime, and (c) the intermediate, near Halfin-Whitt regime; whereas the dynamics asymptotically decouple in the other heavy traffic regimes. We characterize the limiting dynamics, which are different for each scaling regime. We consider relevant respective performance measures for regimes (a) and (b) --- namely, the probability of wait and the slowdown. While closed form formulas for these performance measures have been derived for models that do not accommodate server vacations, it is difficult to obtain closed form formulas for these performance measures in the setting with server vacations. Instead, we propose formulas that approximate these performance measures, and depend on the steady-state mean number of available servers and previously derived formulas for models without server vacations. We test the accuracy of these formulas numerically.
In this note, we apply Steins method to analyze the performance of general load balancing schemes in the many-server heavy-traffic regime. In particular, consider a load balancing system of $N$ servers and the distance of arrival rate to the capacity
A scheduled arrival process is one in which the n th arrival is scheduled for time n, but instead occurs at a different time. The difference between the scheduled time and the arrival time is called the perturbation. The sequence of perturbations is
This paper presents a heavy traffic analysis of the behavior of multi-class acyclic queueing networks in which the customers have deadlines. We assume the queueing system consists of J stations, and there are K different customer classes. Customers f
The focus of this paper is on the asymptotics of large-time numbers of customers in time-periodic Markovian many-server queues with customer abandonment in heavy traffic. Limit theorems are obtained for the periodic number-of-customers processes unde
This paper presents a heavy-traffic analysis of the behavior of a single-server queue under an Earliest-Deadline-First (EDF) scheduling policy in which customers have deadlines and are served only until their deadlines elapse. The performance of the