ﻻ يوجد ملخص باللغة العربية
The focus of this paper is on the asymptotics of large-time numbers of customers in time-periodic Markovian many-server queues with customer abandonment in heavy traffic. Limit theorems are obtained for the periodic number-of-customers processes under the fluid and diffusion scalings. Other results concern limits for general time-dependent queues and for time-homogeneous queues in steady state.
We present a joint extraction of the strong coupling $alpha_s$ and the top-quark pole mass $m_t$ from measurements of top-quark pair production performed by the ATLAS and CMS experiments at the 8 TeV LHC. For the first time, differential NNLO theory
This paper considers a GI/GI/1 processor sharing queue in which jobs have soft deadlines. At each point in time, the collection of residual service times and deadlines is modeled using a random counting measure on the right half-plane. The limit of t
For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single paramet
A scheduled arrival process is one in which the n th arrival is scheduled for time n, but instead occurs at a different time. The difference between the scheduled time and the arrival time is called the perturbation. The sequence of perturbations is
In this note, we apply Steins method to analyze the steady-state distribution of queueing systems in the traditional heavy-traffic regime. Compared to previous methods (e.g., drift method and transform method), Steins method allows us to establish st