ﻻ يوجد ملخص باللغة العربية
We study the identification and estimation of treatment effect parameters in weakly separable models. In their seminal work, Vytlacil and Yildiz (2007) showed how to identify and estimate the average treatment effect of a dummy endogenous variable when the outcome is weakly separable in a single index. Their identification result builds on a monotonicity condition with respect to this single index. In comparison, we consider similar weakly separable models with multiple indices, and relax the monotonicity condition for identification. Unlike Vytlacil and Yildiz (2007), we exploit the full information in the distribution of the outcome variable, instead of just its mean. Indeed, when the outcome distribution function is more informative than the mean, our method is applicable to more general settings than theirs; in particular we do not rely on their monotonicity assumption and at the same time we also allow for multiple indices. To illustrate the advantage of our approach, we provide examples of models where our approach can identify parameters of interest whereas existing methods would fail. These examples include models with multiple unobserved disturbance terms such as the Roy model and multinomial choice models with dummy endogenous variables, as well as potential outcome models with endogenous random coefficients. Our method is easy to implement and can be applied to a wide class of models. We establish standard asymptotic properties such as consistency and asymptotic normality.
This paper studies identification and estimation of a class of dynamic models in which the decision maker (DM) is uncertain about the data-generating process. The DM surrounds a benchmark model that he or she fears is misspecified by a set of models.
This paper explores the identification and estimation of nonseparable panel data models. We show that the structural function is nonparametrically identified when it is strictly increasing in a scalar unobservable variable, the conditional distributi
We study the impact of weak identification in discrete choice models, and provide insights into the determinants of identification strength in these models. Using these insights, we propose a novel test that can consistently detect weak identificatio
We propose a computationally feasible way of deriving the identified features of models with multiple equilibria in pure or mixed strategies. It is shown that in the case of Shapley regular normal form games, the identified set is characterized by th
We study identification and estimation of causal effects in settings with panel data. Traditionally researchers follow model-based identification strategies relying on assumptions governing the relation between the potential outcomes and the unobserv