ﻻ يوجد ملخص باللغة العربية
Context. Magnetic fields are important to the dynamics of many astrophysical processes and can typically be studied through polarization observations. Polarimetric interferometry capabilities of modern (sub)millimeter telescope facilities have made it possible to obtain detailed velocity resolved maps of molecular line polarization. To properly analyze these for the information they carry regarding the magnetic field, the development of adaptive three-dimensional polarized line radiative transfer models is necessary. Aims. We aim to develop an easy-to-use program to simulate the polarization maps of molecular and atomic (sub)millimeter lines in magnetized astrophysical regions, such as protostellar disks, circumstellar envelopes, or molecular clouds. Methods. By considering the local anisotropy of the radiation field as the only alignment mechanism, we can model the alignment of molecular or atomic species inside a regular line radiative transfer simulation by only making use of the converged output of this simulation. Calculations of the aligned molecular or atomic states can subsequently be used to ray trace the polarized maps of the three-dimensional simulation. Results. We present a three-dimensional radiative transfer code, POlarized Radiative Transfer Adapted to Lines (PORTAL), that can simulate the emergence of polarization in line emission through a magnetic field of arbitrary morphology. Our model can be used in stand-alone mode, assuming LTE excitation, but it is best used when processing the output of regular three-dimensional (nonpolarized) line radiative transfer modeling codes. We present the spectral polarization map of test cases of a collapsing sphere and protoplanetary disk for multiple three-dimensional magnetic field morphologies.
Radiative transfer modelling is part of many astrophysical simulations and is used to make synthetic observations and to assist analysis of observations. We concentrate on the modelling of the radio lines emitted by the interstellar medium. In connec
HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code i
We present a novel Lyman alpha (Ly$alpha$) radiative transfer code, SEURAT, where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on
Accreting supermassive black holes are sources of polarized radiation that propagates through highly curved spacetime before reaching the observer. In order to help interpret observations of such polarized emission, accurate and efficient numerical s
We discuss the development of the new radiative transfer code Wind3D. It solves the non-LTE radiative transport problem in moving stellar atmosphere models in three geometric dimensions. The code accepts arbitrary 3D velocity fields in Cartesian geom