ترغب بنشر مسار تعليمي؟ اضغط هنا

PORTAL--three-dimensional polarized (sub)millimeter line radiative transfer

64   0   0.0 ( 0 )
 نشر من قبل Boy Lankhaar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Magnetic fields are important to the dynamics of many astrophysical processes and can typically be studied through polarization observations. Polarimetric interferometry capabilities of modern (sub)millimeter telescope facilities have made it possible to obtain detailed velocity resolved maps of molecular line polarization. To properly analyze these for the information they carry regarding the magnetic field, the development of adaptive three-dimensional polarized line radiative transfer models is necessary. Aims. We aim to develop an easy-to-use program to simulate the polarization maps of molecular and atomic (sub)millimeter lines in magnetized astrophysical regions, such as protostellar disks, circumstellar envelopes, or molecular clouds. Methods. By considering the local anisotropy of the radiation field as the only alignment mechanism, we can model the alignment of molecular or atomic species inside a regular line radiative transfer simulation by only making use of the converged output of this simulation. Calculations of the aligned molecular or atomic states can subsequently be used to ray trace the polarized maps of the three-dimensional simulation. Results. We present a three-dimensional radiative transfer code, POlarized Radiative Transfer Adapted to Lines (PORTAL), that can simulate the emergence of polarization in line emission through a magnetic field of arbitrary morphology. Our model can be used in stand-alone mode, assuming LTE excitation, but it is best used when processing the output of regular three-dimensional (nonpolarized) line radiative transfer modeling codes. We present the spectral polarization map of test cases of a collapsing sphere and protoplanetary disk for multiple three-dimensional magnetic field morphologies.



قيم البحث

اقرأ أيضاً

82 - M. Juvela 2020
Radiative transfer modelling is part of many astrophysical simulations and is used to make synthetic observations and to assist analysis of observations. We concentrate on the modelling of the radio lines emitted by the interstellar medium. In connec tion with high-resolution models, this can be significant computationally challenge. Our goal is a line radiative transfer (RT) program that makes good use of multi-core CPUs and GPUs. Parallelisation is essential to speed up computations and to enable the tackling of large modelling tasks with personal computers. The program LOC is based on ray-tracing and uses standard accelerated lambda iteration (ALI) methods for faster convergence. The program works on 1D and 3D grids. The 1D version makes use of symmetries to speed up the RT calculations. The 3D version works with octree grids and, to enable calculations with large models, is optimised for low memory usage. Tests show that LOC gives results that are in agreement with other RT codes to within ~2%. This is typical of code-to-code differences, which often are related to different interpretations of the model set-up. LOC run times compare favourably with those of Monte Carlo codes. In 1D tests, LOC runs were by up to a factor ~20 faster on a GPU than on a single CPU core. In spite of the complex path calculations, up to ~10 speed-up was observed also for 3D models using octree discretisation. GPUs enable calculations of models with hundreds of millions of cells, as encountered in the context of large-scale simulations of interstellar clouds. LOC shows good performance and accuracy and and is able to handle many RT modelling tasks on personal computers. Being written in Python, with the computing-intensive parts implemented as compiled OpenCL kernels, it can also a serve as a platform for further experimentation with alternative RT implementations.
HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code i s problem-independent, and only requires an arbitrary three-dimensional density structure, dust properties, the position and properties of the illuminating sources, and parameters controlling the running and output of the code. HYPERION is parallelized, and is shown to scale well to thousands of processes. Two common benchmark models for protoplanetary disks were computed, and the results are found to be in excellent agreement with those from other codes. Finally, to demonstrate the capabilities of the code, dust temperatures, SEDs, and synthetic multi-wavelength images were computed for a dynamical simulation of a low-mass star formation region. HYPERION is being actively developed to include new features, and is publicly available (http://www.hyperion-rt.org).
We present a novel Lyman alpha (Ly$alpha$) radiative transfer code, SEURAT, where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby we demonstrate that our code solves the Ly$alpha$ radiative transfer with sufficient accuracy. We emphasise that SEURAT can treat the transfer of Ly$alpha$ photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of Ly$alpha$ photons in the interstellar medium of young star-forming galaxies like Ly$alpha$ emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of Ly$alpha$ emission, which can be compared to the observations of LAEs.
Accreting supermassive black holes are sources of polarized radiation that propagates through highly curved spacetime before reaching the observer. In order to help interpret observations of such polarized emission, accurate and efficient numerical s chemes for polarized radiative transfer in curved spacetime are needed. In this manuscript we extend our publicly available radiative transfer code RAPTOR to include polarization. We provide a brief review of different codes and methods for covariant polarized radiative transfer available in the literature and existing codes, and present an efficient new scheme. For the spacetime-propagation aspect of the computation, we develop a compact, Lorentz-invariant representation of a polarized ray. For the plasma-propagation aspect of the computation, we perform a formal analysis of the stiffness of the polarized radiative-transfer equation with respect to our explicit integrator, and develop a hybrid integration scheme that switches to an implicit integrator in case of stiffness, in order to solve the equation with optimal speed and accuracy for all possible values of the local optical/Faraday thickness of the plasma. We perform a comprehensive code verification by solving a number of well-known test problems using RAPTOR and comparing its output to exact solutions. We also demonstrate convergence with existing polarized radiative-transfer codes in the context of complex astrophysical problems. RAPTOR is capable of performing polarized radiative transfer in arbitrary, highly curved spacetimes. This capability is crucial for interpreting polarized observations of accreting black holes, which can yield information about the magnetic-field configuration in such accretion flows. The efficient formalism implemented in RAPTOR is computationally light and conceptually simple. The code is publicly available.
188 - A. Lobel 2007
We discuss the development of the new radiative transfer code Wind3D. It solves the non-LTE radiative transport problem in moving stellar atmosphere models in three geometric dimensions. The code accepts arbitrary 3D velocity fields in Cartesian geom etry without assumptions of axial symmetry. Wind3D is currently implemented as a fully parallelized (exact) accelerated lambda iteration scheme with a two level atom formulation. The numerical transfer scheme is efficient and very accurate to trace small variations of local velocity gradients on line opacity in strongly scattering dominated extended stellar winds. We investigate the detailed formation of P Cygni line profiles observed in ultraviolet spectra of massive stars. We compute the detailed shape of these resonance lines to model local enhancements of line opacity that can for instance be caused by clumping in supersonically expanding winds. Wind3D will be applied to hydrodynamic models to investigate physical properties of discrete absorption line components.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا