ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Dimensional Radiative Transfer in Winds of Massive Stars: Wind3D

136   0   0.0 ( 0 )
 نشر من قبل A. Lobel
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Lobel




اسأل ChatGPT حول البحث

We discuss the development of the new radiative transfer code Wind3D. It solves the non-LTE radiative transport problem in moving stellar atmosphere models in three geometric dimensions. The code accepts arbitrary 3D velocity fields in Cartesian geometry without assumptions of axial symmetry. Wind3D is currently implemented as a fully parallelized (exact) accelerated lambda iteration scheme with a two level atom formulation. The numerical transfer scheme is efficient and very accurate to trace small variations of local velocity gradients on line opacity in strongly scattering dominated extended stellar winds. We investigate the detailed formation of P Cygni line profiles observed in ultraviolet spectra of massive stars. We compute the detailed shape of these resonance lines to model local enhancements of line opacity that can for instance be caused by clumping in supersonically expanding winds. Wind3D will be applied to hydrodynamic models to investigate physical properties of discrete absorption line components.

قيم البحث

اقرأ أيضاً

134 - A. Lobel , 2010
We develop 3-D models of the structured winds of massive hot stars with the Wind3D radiative transfer (RT) code. We investigate the physical properties of large-scale structures observed in the wind of the B-type supergiant HD 64760 with detailed lin e profile fits to Discrete Absorption Components (DACs) and rotational modulations observed with IUE in Si IV {lambda}1395. We develop parameterized input models Wind3D with large-scale equatorial wind density- and velocity-structures, or so-called `Co-rotating Interaction Regions (CIRs) and `Rotational Modulation Regions (RMRs). The parameterized models offer important advantages for high-performance RT calculations over ab-initio hydrodynamic input models. The acceleration of the input model calculations permits us to simulate and investigate a wide variety of physical conditions in the extended winds of massive hot stars. The new modeling method is very flexible for constraining the dynamic and geometric wind properties of RMRs in HD 64760. We compute that the modulations are produced by a regular pattern of radial density enhancements that protrude almost linearly into the equatorial wind. We find that the modulations are caused by narrow `spoke-like wind regions. We present a hydrodynamic model showing that the linearly shaped radial wind pattern can be caused by mechanical wave action at the base of the stellar wind from the blue supergiant.
152 - M. Schartmann 2008
Tori of Active Galactic Nuclei are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the hot gas as well as by the energetic radiation of the accretion disk, the dust is often assumed t o be distributed in clouds. In our new 3D model of AGN dust tori, the torus is modelled as a wedge-shaped disk in which dusty clouds are randomly distributed, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. To this end, we employ radiative transfer calculations with the help of the 3D Monte Carlo code MC3D. In a second step, interferometric visibilities are calculated from the simulated surface brightness distributions, which can be directly compared to observations with the MIDI instrument. The radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 micron-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the torus, due to shadowing effects of clouds there. This explains failure and success of previous modelling efforts of clumpy tori. After adapting the parameters of our clumpy standard model to the circumstances of the Seyfert 2 Circinus galaxy, it can qualitatively explain recent mid-infrared interferometric observations performed with MIDI, as well as high resolution spectral data.
Various unification schemes interpret the complex phenomenology of quasars and luminous active galactic nuclei (AGN) in terms of a simple picture involving a central black hole, an accretion disc and an associated outflow. Here, we continue our tests of this paradigm by comparing quasar spectra to synthetic spectra of biconical disc wind models, produced with our state-of-the-art Monte Carlo radiative transfer code. Previously, we have shown that we could produce synthetic spectra resembling those of observed broad absorption line (BAL) quasars, but only if the X-ray luminosity was limited to $10^{43}$ erg s$^{-1}$. Here, we introduce a simple treatment of clumping, and find that a filling factor of $sim0.01$ moderates the ionization state sufficiently for BAL features to form in the rest-frame UV at more realistic X-ray luminosities. Our fiducial model shows good agreement with AGN X-ray properties and the wind produces strong line emission in, e.g., Ly alpha and CIV 1550AA at low inclinations. At high inclinations, the spectra possess prominent LoBAL features. Despite these successes, we cannot reproduce all emission lines seen in quasar spectra with the correct equivalent-width ratios, and we find an angular dependence of emission-line equivalent width despite the similarities in the observed emission line properties of BAL and non-BAL quasars. Overall, our work suggests that biconical winds can reproduce much of the qualitative behaviour expected from a unified model, but we cannot yet provide quantitative matches with quasar properties at all viewing angles. Whether disc winds can successfully unify quasars is therefore still an open question.
Context. Magnetic fields are important to the dynamics of many astrophysical processes and can typically be studied through polarization observations. Polarimetric interferometry capabilities of modern (sub)millimeter telescope facilities have made i t possible to obtain detailed velocity resolved maps of molecular line polarization. To properly analyze these for the information they carry regarding the magnetic field, the development of adaptive three-dimensional polarized line radiative transfer models is necessary. Aims. We aim to develop an easy-to-use program to simulate the polarization maps of molecular and atomic (sub)millimeter lines in magnetized astrophysical regions, such as protostellar disks, circumstellar envelopes, or molecular clouds. Methods. By considering the local anisotropy of the radiation field as the only alignment mechanism, we can model the alignment of molecular or atomic species inside a regular line radiative transfer simulation by only making use of the converged output of this simulation. Calculations of the aligned molecular or atomic states can subsequently be used to ray trace the polarized maps of the three-dimensional simulation. Results. We present a three-dimensional radiative transfer code, POlarized Radiative Transfer Adapted to Lines (PORTAL), that can simulate the emergence of polarization in line emission through a magnetic field of arbitrary morphology. Our model can be used in stand-alone mode, assuming LTE excitation, but it is best used when processing the output of regular three-dimensional (nonpolarized) line radiative transfer modeling codes. We present the spectral polarization map of test cases of a collapsing sphere and protoplanetary disk for multiple three-dimensional magnetic field morphologies.
HYPERION is a new three-dimensional dust continuum Monte-Carlo radiative transfer code that is designed to be as generic as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids. The main part of the code i s problem-independent, and only requires an arbitrary three-dimensional density structure, dust properties, the position and properties of the illuminating sources, and parameters controlling the running and output of the code. HYPERION is parallelized, and is shown to scale well to thousands of processes. Two common benchmark models for protoplanetary disks were computed, and the results are found to be in excellent agreement with those from other codes. Finally, to demonstrate the capabilities of the code, dust temperatures, SEDs, and synthetic multi-wavelength images were computed for a dynamical simulation of a low-mass star formation region. HYPERION is being actively developed to include new features, and is publicly available (http://www.hyperion-rt.org).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا