ﻻ يوجد ملخص باللغة العربية
For a real function, automatic differentiation is such a standard algorithm used to efficiently compute its gradient, that it is integrated in various neural network frameworks. However, despite the recent advances in using complex functions in machine learning and the well-established usefulness of automatic differentiation, the support of automatic differentiation for complex functions is not as well-established and widespread as for real functions. In this work we propose an efficient and seamless scheme to implement automatic differentiation for complex functions, which is a compatible generalization of the current scheme for real functions. This scheme can significantly simplify the implementation of neural networks which use complex numbers.
In this note, we report the back propagation formula for complex valued singular value decompositions (SVD). This formula is an important ingredient for a complete automatic differentiation(AD) infrastructure in terms of complex numbers, and it is al
The successes of deep learning, variational inference, and many other fields have been aided by specialized implementations of reverse-mode automatic differentiation (AD) to compute gradients of mega-dimensional objectives. The AD techniques underlyi
Automatic Differentiation Variational Inference (ADVI) is a useful tool for efficiently learning probabilistic models in machine learning. Generally approximate posteriors learned by ADVI are forced to be unimodal in order to facilitate use of the re
We present ADerrors.jl, a software for linear error propagation and analysis of Monte Carlo data. Although the focus is in data analysis in Lattice QCD, where estimates of the observables have to be computed from Monte Carlo samples, the software als
Data augmentation methods have been shown to be a fundamental technique to improve generalization in tasks such as image, text and audio classification. Recently, automated augmentation methods have led to further improvements on image classification