ﻻ يوجد ملخص باللغة العربية
For the recently discovered cuprate superconductor $mathrm{Ba_{2}CuO_{3+delta}}$, we propose a lattice structure which resembles the model considered by Lieb to represent the vastly oxygen-deficient material. We first investigate the stability of the Lieb-lattice structure, and then construct a multiorbital Hubbard model based on first-principles calculation. By applying the fluctuation-exchange approximation to the model and solving the linearized Eliashberg equation, we show that $s$-wave and $d$-wave pairings closely compete with each other, and, more interestingly, that the intra-orbital and inter-orbital pairings coexist. We further show that, if the energy of the $d_{3z^2-r^2}$ band is raised to make it incipient with the lower edge of the band close to the Fermi level within a realistic band filling regime, $spm$-wave superconductivity is strongly enhanced. We reveal an intriguing relation between the Lieb model and the two-orbital model for the usual K$_2$NiF$_4$ structure where a close competition between $s-$ and $d-$wave pairings is known to occur. The enhanced superconductivity in the present model is further shown to be related to an enhancement found previously in the bilayer Hubbard model with an incipient band.
First principles investigations of the high temperature superconducting system Ba$_2$CuO$_{3+delta}$, recently discovered at $deltaapprox0.2$ at $T_c=70$ K, are applied to demonstrate the effects of oxygen ordering on the electronic and magnetic prop
The recently discovered cuprate superconductor Ba$_2$CuO$_{3+delta}$ exhibits a high $T_csimeq73$K at $deltasimeq0.2$. The polycrystal grown under high pressure has a structure similar to La$_2$CuO$_4$, but with dramatically different lattice paramet
Angle-dependent magnetoresistance measurements are used to determine the isotropic and anisotropic components of the transport scattering rate in overdoped Tl$_2$Ba$_2$CuO$_{6+delta}$ for a range of $T_c$ values between 15K and 35K. The size of the a
The angle-dependent interlayer magnetoresistance of overdoped Tl$_2$Ba$_2$CuO$_{6+delta}$ has been measured in high magnetic fields up to 45 Tesla. A conventional Boltzmann transport analysis with no basal-plane anisotropy in the cyclotron frequency
This article describes new polar angle-dependent magnetoresistance (ADMR) measurements in the overdoped cuprate Tl$_2$Ba$_2$CuO$_{6+delta}$ over an expanded range of temperatures and azimuthal angles. These detailed measurements re-affirm the analysi