ترغب بنشر مسار تعليمي؟ اضغط هنا

Angle dependent magnetoresistance measurements in Tl$_2$Ba$_2$CuO$_{6+delta}$ and the need for anisotropic scattering

93   0   0.0 ( 0 )
 نشر من قبل James Analytis
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The angle-dependent interlayer magnetoresistance of overdoped Tl$_2$Ba$_2$CuO$_{6+delta}$ has been measured in high magnetic fields up to 45 Tesla. A conventional Boltzmann transport analysis with no basal-plane anisotropy in the cyclotron frequency $omega_c$ or transport lifetime $tau$ is shown to be inadequate for explaining the data. We describe in detail how the analysis can be modified to incorporate in-plane anisotropy in these two key quantities and extract the degree of anisotropy for each by assuming a simple four-fold symmetry. While anisotropy in $omega_c$ and other Fermi surface parameters may improve the fit, we demonstrate that the most important anisotropy is that in the transport lifetime, thus confirming its role in the physics of overdoped superconducting cuprates.

قيم البحث

اقرأ أيضاً

Angle-dependent magnetoresistance measurements are used to determine the isotropic and anisotropic components of the transport scattering rate in overdoped Tl$_2$Ba$_2$CuO$_{6+delta}$ for a range of $T_c$ values between 15K and 35K. The size of the a nisotropic scattering term is found to scale linearly with $T_c$, establishing a link between the superconducting and normal state physics. Comparison with results from angle resolved photoemission spectroscopy indicates that the transport and quasiparticle lifetimes are distinct.
This article describes new polar angle-dependent magnetoresistance (ADMR) measurements in the overdoped cuprate Tl$_2$Ba$_2$CuO$_{6+delta}$ over an expanded range of temperatures and azimuthal angles. These detailed measurements re-affirm the analysi s of earlier data taken over a more restricted temperature range and at a single azimuthal orientation, in particular the delineation of the intraplane scattering rate into isotropic and anisotropic components. These new measurements also reveal additional features in the temperature and momentum dependence of the scattering rate, including anisotropy in the $T^2$ component and the preservation of both the $T$-linear and $T^2$ components up to 100 K. The resultant form of the scattering rate places firm constraints on the development of any forthcoming theoretical framework for the normal state charge response of high temperature superconducting cuprates.
The spontaneous expulsion of applied magnetic field, the Meissner effect, is a defining feature of superconductors; in Type-II superconductors above the lower critical field, this screening takes the form of a lattice of magnetic flux vortices. Using implanted spin-1/2 positive muons, one can measure the vortex lattice field distribution through the spin precession and deduce key parameters of the superconducting ground state, and thereby fundamental properties of the superconducting pairing. Muon spin rotation/relaxation ($mu$SR) experiments have indeed revealed much interesting physics in the underdoped cuprates, where superconductivity is closely related to, or coexistent with, disordered or fluctuating magnetic and charge excitations. Such complications should be absent in overdoped cuprates, which are believed to exhibit conventional Fermi liquid behaviour. These first transverse field (TF)-$mu^+$SR experiments on heavily-overdoped single crystals reveal a superfluid density exhibiting a clear inflection point near 0.5$T_c$, with a striking doping-independent scaling. This reflects hitherto unrecognized physics intrinsic to $d$-wave vortices, evidently generic to the cuprates, and may offer fundamentally new insights into their still-mysterious superconductivity.
There is a renewed interest in superconductors for high-frequency applications, leading to a reconsideration of already known low-$T_c$ and high-$T_c$ materials. In this view, we present an experimental investigation of the millimeter-wave response i n moderate magnetic fields of Tl$_2$Ba$_2$CaCu$_2$O$_{8+x}$ superconducting films with the aim of identifying the mechanisms of the vortex-motion-induced response. We measure the dc magnetic-field-dependent change of the surface impedance, $Delta Z_s(H) = Delta R_s(H) + iDelta X_s(H)$ at 48 GHz by means of the dielectric resonator method. We find that the overall response is made up of several contributions, with different weights depending on the temperature and field: a possible contribution from Josephson or Abrikosov-Josephson fluxons at low fields; a seemingly conventional vortex dynamics at higher fields; a significant pair breaking in the temperature region close to $T_c$. We extract the vortex motion depinning frequency $f_p$, which attains surprisingly high values. However, by exploiting the generalized model for relaxational dynamics we show that this result come from a combination of a pinning constant $k_p$ arising from moderate pinning, and a vortex viscosity $eta$ with anomalously small values. This latter fact, implying large dissipation, is likely a result from a peculiar microscopic structure and thus poses severe limits to the application of Tl$_2$Ba$_2$CaCu$_2$O$_{8+x}$ in a magnetic field.
We present an extensive study of vortex dynamics in a high-quality single crystal of HgBa$_2$CuO$_{4+delta}$ (Hg1201), a highly anisotropic superconductor that is a model system for studying the effects of anisotropy. From magnetization $M$ measureme nts over a wide range of temperatures $T$ and fields $H$, we construct a detailed vortex phase diagram. We find that the temperature-dependent vortex penetration field $H_p(T)$, second magnetization peak $H_{smp}(T)$, and irreversibility field $H_{irr}(T)$ all decay exponentially at low temperatures and exhibit an abrupt change in behavior at high temperatures $T/T_c gtrsim 0.5$. By measuring the rates of thermally activated vortex motion (creep) $S(T,H)=|d ln M(T,H) / d ln t|$, we reveal glassy behavior involving collective creep of bundles of 2D pancake vortices as well as temperature- and time-tuned crossovers from elastic (collective) dynamics to plastic flow. Based on the creep results, we show that the second magnetization peak coincides with the elastic-to-plastic crossover at low $T$, yet the mechanism changes at higher temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا