ترغب بنشر مسار تعليمي؟ اضغط هنا

A LOFAR Observation of Ionospheric Scintillation from Two Simultaneous Travelling Ionospheric Disturbances

388   0   0.0 ( 0 )
 نشر من قبل Richard A. Fallows
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the results from one of the first observations of ionospheric scintillation taken using the Low-Frequency Array (LOFAR). The observation was of the strong natural radio source Cas A, taken overnight on 18-19 August 2013, and exhibited moderately strong scattering effects in dynamic spectra of intensity received across an observing bandwidth of 10-80MHz. Delay-Doppler spectra (the 2-D FFT of the dynamic spectrum) from the first hour of observation showed two discrete parabolic arcs, one with a steep curvature and the other shallow, which can be used to provide estimates of the distance to, and velocity of, the scattering plasma. A cross-correlation analysis of data received by the dense array of stations in the LOFAR core reveals two different velocities in the scintillation pattern: a primary velocity of ~30m/s with a north-west to south-east direction, associated with the steep parabolic arc and a scattering altitude in the F-region or higher, and a secondary velocity of ~110m/s with a north-east to south-west direction, associated with the shallow arc and a scattering altitude in the D-region. Geomagnetic activity was low in the mid-latitudes at the time, but a weak sub-storm at high latitudes reached its peak at the start of the observation. An analysis of Global Navigation Satellite Systems (GNSS) and ionosonde data from the time reveals a larger-scale travelling ionospheric disturbance (TID), possibly the result of the high-latitude activity, travelling in the north-west to south-east direction, and, simultaneously, a smaller--scale TID travelling in a north-east to south-west direction, which could be associated with atmospheric gravity wave activity. The LOFAR observation shows scattering from both TIDs, at different altitudes and propagating in different directions. To the best of our knowledge this is the first time that such a phenomenon has been reported.

قيم البحث

اقرأ أيضاً

Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Ka plan {it et al} (2015) presenting observations using the Murchison Widefield Array (MWA) reports evidence of night-side IPS on two radio sources within their field of view. However, the low time cadence of 2,s used might be expected to average out the IPS signal, resulting in the reasonable assumption that the scintillation is more likely to be ionospheric in origin. To verify or otherwise this assumption, this letter uses observations of IPS taken at a high time cadence using the Low Frequency Array (LOFAR). Averaging these to the same as the MWA observations, we demonstrate that the MWA result is consistent with IPS, although some contribution from the ionosphere cannot be ruled out. These LOFAR observations represent the first of night-side IPS using LOFAR, with solar wind speeds consistent with a slow solar wind stream in one observation and a CME expecting to be observed in another.
Intensity scintillations of cosmic radio sources are used to study astrophysical plasmas like the ionosphere, the solar wind, and the interstellar medium. Normally these observations are relatively narrow band. With Low Frequency Array (LOFAR) techno logy at the Kilpisjarvi Atmospheric Imaging Receiver Array (KAIRA) station in northern Finland we have observed scintillations over a 3 octave bandwidth. ``Parabolic arcs, which were discovered in interstellar scintillations of pulsars, can provide precise estimates of the distance and velocity of the scattering plasma. Here we report the first observations of such arcs in the ionosphere and the first broad-band observations of arcs anywhere, raising hopes that study of the phenomenon may similarly improve the analysis of ionospheric scintillations. These observations were made of the strong natural radio source Cygnus-A and covered the entire 30-250,MHz band of KAIRA. Well-defined parabolic arcs were seen early in the observations, before transit, and disappeared after transit although scintillations continued to be obvious during the entire observation. We show that this can be attributed to the structure of Cygnus-A. Initial results from modeling these scintillation arcs are consistent with simultaneous ionospheric soundings taken with other instruments, and indicate that scattering is most likely to be associated more with the topside ionosphere than the F-region peak altitude. Further modeling and possible extension to interferometric observations, using international LOFAR stations, are discussed.
We investigate an unusual class of medium-scale traveling ionospheric disturbances (MS TIDs) of the nonwave type, isolated ionospheric disturbances (IIDs) that manifest themselves in total electron content (TEC) variations in the form of single aperi odic negative TEC disturbances of a duration of about 10 min (the total electron content spikes, TECS). It was found that TECS are observed in no more than 1-2 % of the total number of radio paths. We present the results derived from analyzing the dependence of TECS parameters on local time, and on the level of geomagnetic activity. The TECS amplitude exceeds at least one order of magnitude the TEC fluctuation intensity under background conditions. To analyze TECS dynamic characteristics the event of 5 October, 2001 was used.
LOFAR is the LOw Frequency Radio interferometer ARray located at mid-latitude ($52^{circ} 53N$). Here, we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show th at LOFAR is able to determine differential ionospheric TEC values with an accuracy better than 1 mTECU over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between $1$ and $80$ km, with a slope that is in general larger than the $5/3$ expected for pure Kolmogorov turbulence. The measured average slope is $1.89$ with a one standard deviation spread of $0.1$. The diffractive scale, i.e. the length scale where the phase variance is $1, mathrm{rad^2}$, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at $150$ MHz vary between $3.5$ and $30,$ km. A diffractive scale above $5$ km, pertinent to about $90 %$ of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR Epoch of Reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about $60%$ of the observations.
A number of hardware upgrades for the Low-Frequency Array (LOFAR) are currently under development. These upgrades are collectively referred to as the LOFAR 2.0 upgrade. The first stage of LOFAR 2.0 will introduce a distributed clock signal and allow for simultaneous observation with all the low-band and high-band antennas of the array. Our aim is to provide a tool for accurate simulations of LOFAR 2.0. We present a software to simulate LOFAR and LOFAR 2.0 observations, which includes realistic models for all important systematic effects such as the first and second order ionospheric corruptions, time-variable primary-beam attenuation, station based delays and bandpass response. The ionosphere is represented as a thin layer of frozen turbulence. Furthermore, thermal noise can be added to the simulation at the expected level. We simulate a full 8-hour simultaneous low- and high-band antenna observation of a calibrator source and a target field with the LOFAR 2.0 instrument. The simulated data is calibrated using readjusted LOFAR calibration strategies. We examine novel approaches of solution-transfer and joint calibration to improve direction-dependent ionospheric calibration for LOFAR. We find that the calibration of the simulated data behaves very similarly to a real observation and reproduces characteristic properties of LOFAR data such as realistic solutions and image quality. We analyze strategies for direction-dependent calibration of LOFAR 2.0 and find that the ionospheric parameters can be determined most accurately when combining the information of the high-band and low-band in a joint calibration approach. In contrast, the transfer of total electron content solutions from the high-band to the low-band shows good convergence but is highly susceptible to the presence of non-ionospheric phase errors in the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا