ﻻ يوجد ملخص باللغة العربية
LOFAR is the LOw Frequency Radio interferometer ARray located at mid-latitude ($52^{circ} 53N$). Here, we present results on ionospheric structures derived from 29 LOFAR nighttime observations during the winters of 2012/2013 and 2013/2014. We show that LOFAR is able to determine differential ionospheric TEC values with an accuracy better than 1 mTECU over distances ranging between 1 and 100 km. For all observations the power law behavior of the phase structure function is confirmed over a long range of baseline lengths, between $1$ and $80$ km, with a slope that is in general larger than the $5/3$ expected for pure Kolmogorov turbulence. The measured average slope is $1.89$ with a one standard deviation spread of $0.1$. The diffractive scale, i.e. the length scale where the phase variance is $1, mathrm{rad^2}$, is shown to be an easily obtained single number that represents the ionospheric quality of a radio interferometric observation. A small diffractive scale is equivalent to high phase variability over the field of view as well as a short time coherence of the signal, which limits calibration and imaging quality. For the studied observations the diffractive scales at $150$ MHz vary between $3.5$ and $30,$ km. A diffractive scale above $5$ km, pertinent to about $90 %$ of the observations, is considered sufficient for the high dynamic range imaging needed for the LOFAR Epoch of Reionization project. For most nights the ionospheric irregularities were anisotropic, with the structures being aligned with the Earth magnetic field in about $60%$ of the observations.
The low frequency array (LOFAR), is the first radio telescope designed with the capability to measure radio emission from cosmic-ray induced air showers in parallel with interferometric observations. In the first $sim 2,mathrm{years}$ of observing, 4
Observation of interplanetary scintillation (IPS) beyond Earth-orbit can be challenging due to the necessity to use low radio frequencies at which scintillation due to the ionosphere could confuse the interplanetary contribution. A recent paper by Ka
A number of hardware upgrades for the Low-Frequency Array (LOFAR) are currently under development. These upgrades are collectively referred to as the LOFAR 2.0 upgrade. The first stage of LOFAR 2.0 will introduce a distributed clock signal and allow
Aims: This paper discusses the spectral occupancy for performing radio astronomy with the Low-Frequency Array (LOFAR), with a focus on imaging observations. Methods: We have analysed the radio-frequency interference (RFI) situation in two 24-h survey
The LOFAR radio telescope is able to measure the radio emission from cosmic ray induced air showers with hundreds of individual antennas. This allows for precision testing of the emission mechanisms for the radio signal as well as determination of th