ترغب بنشر مسار تعليمي؟ اضغط هنا

A new approach to weak convergence of random cones and polytopes

77   0   0.0 ( 0 )
 نشر من قبل Daniel Temesvari
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A new approach to prove weak convergence of random polytopes on the space of compact convex sets is presented. This is used to show that the profile of the rescaled Schlafli random cone of a random conical tessellation generated by $n$ independent and uniformly distributed random linear hyperplanes in $mathbb{R}^{d+1}$ weakly converges to the typical cell of a stationary and isotropic Poisson hyperplane tessellation in $mathbb{R}^d$, as $n to infty$.

قيم البحث

اقرأ أيضاً

The random convex hull of a Poisson point process in $mathbb{R}^d$ whose intensity measure is a multiple of the standard Gaussian measure on $mathbb{R}^d$ is investigated. The purpose of this paper is to invent a new viewpoint on these Gaussian polyt opes that is based on cumulants and the general large deviation theory of Saulis and Statuleviv{c}ius. This leads to new and powerful concentration inequalities, moment bounds, Marcinkiewicz-Zygmund-type strong laws of large numbers, central limit theorems and moderate deviation principles for the volume and the face numbers. Corresponding results are also derived for the empirical measures induced by these key geometric functionals, taking thereby care of their spatial profiles.
191 - Daniel Hug , Rolf Schneider 2020
We consider an even probability distribution on the $d$-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given $N$ independent random vectors with this distribution, under the condition that they do not positively span the whole space, the positive hull of these vectors is a random polyhedral cone (and its intersection with the unit sphere is a random spherical polytope). It was first studied by Cover and Efron. We consider the expected face numbers of these random cones and describe a threshold phenomenon when the dimension $d$ and the number $N$ of random vectors tend to infinity. In a similar way, we treat the solid angle, and more generally the Grassmann angles. We further consider the expected numbers of $k$-faces and of Grassmann angles of index $d-k$ when also $k$ tends to infinity.
Suppose we choose $N$ points uniformly randomly from a convex body in $d$ dimensions. How large must $N$ be, asymptotically with respect to $d$, so that the convex hull of the points is nearly as large as the convex body itself? It was shown by Dyer- Furedi-McDiarmid that exponentially many samples suffice when the convex body is the hypercube, and by Pivovarov that the Euclidean ball demands roughly $d^{d/2}$ samples. We show that when the convex body is the simplex, exponentially many samples suffice; this then implies the same result for any convex simplicial polytope with at most exponentially many faces.
171 - Daniel Hug , Rolf Schneider 2021
In stochastic geometry there are several instances of threshold phenomena in high dimensions: the behavior of a limit of some expectation changes abruptly when some parameter passes through a critical value. This note continues the investigation of t he expected face numbers of polyhedral random cones, when the dimension of the ambient space increases to infinity. In the focus are the critical values of the observed threshold phenomena, as well as threshold phenomena for differences instead of quotients.
Using the geodesic distance on the $n$-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determi ne the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in $mathbb{R}^{n+1}$, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in $n$-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the $n$-sphere is isometric to the standard $n$-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the $n$-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا