ﻻ يوجد ملخص باللغة العربية
A new approach to prove weak convergence of random polytopes on the space of compact convex sets is presented. This is used to show that the profile of the rescaled Schlafli random cone of a random conical tessellation generated by $n$ independent and uniformly distributed random linear hyperplanes in $mathbb{R}^{d+1}$ weakly converges to the typical cell of a stationary and isotropic Poisson hyperplane tessellation in $mathbb{R}^d$, as $n to infty$.
The random convex hull of a Poisson point process in $mathbb{R}^d$ whose intensity measure is a multiple of the standard Gaussian measure on $mathbb{R}^d$ is investigated. The purpose of this paper is to invent a new viewpoint on these Gaussian polyt
We consider an even probability distribution on the $d$-dimensional Euclidean space with the property that it assigns measure zero to any hyperplane through the origin. Given $N$ independent random vectors with this distribution, under the condition
Suppose we choose $N$ points uniformly randomly from a convex body in $d$ dimensions. How large must $N$ be, asymptotically with respect to $d$, so that the convex hull of the points is nearly as large as the convex body itself? It was shown by Dyer-
In stochastic geometry there are several instances of threshold phenomena in high dimensions: the behavior of a limit of some expectation changes abruptly when some parameter passes through a critical value. This note continues the investigation of t
Using the geodesic distance on the $n$-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determi