ﻻ يوجد ملخص باللغة العربية
An intuitive property of a random graph is that its subgraphs should also appear randomly distributed. We consider graphs whose subgraph densities exactly match their expected values. We call graphs with this property for all subgraphs with $k$ vertices to be $k$-symmetric. We discuss some properties and examples of such graphs. We construct 3-symmetric graphs and provide some statistics.
Given a directed graph, an equivalence relation on the graph vertex set is said to be balanced if, for every two vertices in the same equivalence class, the number of directed edges from vertices of each equivalence class directed to each of the two
A bridgeless graph $G$ is called $3$-flow-critical if it does not admit a nowhere-zero $3$-flow, but $G/e$ has for any $ein E(G)$. Tuttes $3$-flow conjecture can be equivalently stated as that every $3$-flow-critical graph contains a vertex of degree
Let d_i(G) be the density of the 3-vertex i-edge graph in a graph G, i.e., the probability that three random vertices induce a subgraph with i edges. Let S be the set of all quadruples (d_0,d_1,d_2,d_3) that are arbitrary close to 3-vertex graph dens
A finite graph $G$ is said to be {em $(G,3)$-$($connected$)$ homogeneous} if every isomorphism between any two isomorphic (connected) subgraphs of order at most $3$ extends to an automorphism $gin G$ of the graph, where $G$ is a group of automorphism
A textit{linear $3$-graph}, $H = (V, E)$, is a set, $V$, of vertices together with a set, $E$, of $3$-element subsets of $V$, called edges, so that any two distinct edges intersect in at most one vertex. The linear Turan number, ${rm ex}(n,F)$, is th