ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite $3$-connected homogeneous graphs

380   0   0.0 ( 0 )
 نشر من قبل Jin-Xin Zhou
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A finite graph $G$ is said to be {em $(G,3)$-$($connected$)$ homogeneous} if every isomorphism between any two isomorphic (connected) subgraphs of order at most $3$ extends to an automorphism $gin G$ of the graph, where $G$ is a group of automorphisms of the graph. In 1985, Cameron and Macpherson determined all finite $(G, 3)$-homogeneous graphs. In this paper, we develop a method for characterising $(G,3)$-connected homogeneous graphs. It is shown that for a finite $(G,3)$-connected homogeneous graph $G=(V, E)$, either $G_v^{G(v)}$ is $2$--transitive or $G_v^{G(v)}$ is of rank $3$ and $G$ has girth $3$, and that the class of finite $(G,3)$-connected homogeneous graphs is closed under taking normal quotients. This leads us to study graphs where $G$ is quasiprimitive on $V$. We determine the possible quasiprimitive types for $G$ in this case and give new constructions of examples for some possible types.

قيم البحث

اقرأ أيضاً

A multigraph is exactly k-edge-connected if there are exactly k edge-disjoint paths between any pair of vertices. We characterize the class of exactly 3-edge-connected graphs, giving a synthesis involving two operations by which every exactly 3-edge- connected multigraph can be generated. Slightly modified syntheses give the planar exactly 3-edge-connected graphs and the exactly 3-edge-connected graphs with the fewest possible edges.
A graph $Gamma$ is $k$-connected-homogeneous ($k$-CH) if $k$ is a positive integer and any isomorphism between connected induced subgraphs of order at most $k$ extends to an automorphism of $Gamma$, and connected-homogeneous (CH) if this property hol ds for all $k$. Locally finite, locally connected graphs often fail to be 4-CH because of a combinatorial obstruction called the unique $x$ property; we prove that this property holds for locally strongly regular graphs under various purely combinatorial assumptions. We then classify the locally finite, locally connected 4-CH graphs. We also classify the locally finite, locally disconnected 4-CH graphs containing 3-cycles and induced 4-cycles, and prove that, with the possible exception of locally disconnected graphs containing 3-cycles but no induced 4-cycles, every finite 7-CH graph is CH.
For a graph G=(V,E), the k-dominating graph of G, denoted by $D_{k}(G)$, has vertices corresponding to the dominating sets of G having cardinality at most k, where two vertices of $D_{k}(G)$ are adjacent if and only if the dominating set correspondin g to one of the vertices can be obtained from the dominating set corresponding to the second vertex by the addition or deletion of a single vertex. We denote by $d_{0}(G)$ the smallest integer for which $D_{k}(G)$ is connected for all k greater than or equal to $d_{0}(G)$. It is known that $d_{0}(G)$ lies between $Gamma(G)+1$ and $|V|$ (inclusive), where ${Gamma}(G)$ is the upper domination number of G, but constructing a graph G such that $d_{0}(G)>{Gamma}(G)+1$ appears to be difficult. We present two related constructions. The first construction shows that for each integer k greater than or equal to 3 and each integer r from 1 to k-1, there exists a graph $G_{k,r}$ such that ${Gamma}(G_{k,r})=k, {gamma}(G_{k,r})=r+1$ and $d_{0}(G_{k,r})=k+r={Gamma}(G)+{gamma}(G)-1$. The second construction shows that for each integer k greater than or equal to 3 and each integer r from 1 to k-1, there exists a graph $Q_{k,r}$ such that ${Gamma}(Q_{k,r})=k, {gamma}(Q_{k,r})=r$ and $d_{0}(Q_{k,r})=k+r={Gamma}(G)+{gamma}(G)$.
104 - Andrei Gagarin 2008
We adapt the classical 3-decomposition of any 2-connected graph to the case of simple graphs (no loops or multiple edges). By analogy with the block-cutpoint tree of a connected graph, we deduce from this decomposition a bicolored tree tc(g) associat ed with any 2-connected graph g, whose white vertices are the 3-components of g (3-connected components or polygons) and whose black vertices are bonds linking together these 3-components, arising from separating pairs of vertices of g. Two fundamental relationships on graphs and networks follow from this construction. The first one is a dissymmetry theorem which leads to the expression of the class B=B(F) of 2-connected graphs, all of whose 3-connected components belong to a given class F of 3-connected graphs, in terms of various rootings of B. The second one is a functional equation which characterizes the corresponding class R=R(F) of two-pole networks all of whose 3-connected components are in F. All the rootings of B are then expressed in terms of F and R. There follow corresponding identities for all the associated series, in particular the edge index series. Numerous enumerative consequences are discussed.
A $k$-connected set in an infinite graph, where $k > 0$ is an integer, is a set of vertices such that any two of its subsets of the same size $ell leq k$ can be connected by $ell$ disjoint paths in the whole graph. We characterise the existence of $k$-connected sets of arbitrary but fixed infinite cardinality via the existence of certain minors and topological minors. We also prove a duality theorem for the existence of such $k$-connected sets: if a graph contains no such $k$-connected set, then it has a tree-decomposition which, whenever it exists, precludes the existence of such a $k$-connected set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا