ﻻ يوجد ملخص باللغة العربية
Wheeled-legged robots combine the efficiency of wheeled robots when driving on suitably flat surfaces and versatility of legged robots when stepping over or around obstacles. This paper introduces a planning and control framework to realise dynamic locomotion for wheeled biped robots. We propose the Cart-Linear Inverted Pendulum Model (Cart-LIPM) as a template model for the rolling motion and the under-actuated LIPM for contact changes while walking. The generated motion is then tracked by an inverse dynamic whole-body controller which coordinates all joints, including the wheels. The framework has a hierarchical structure and is implemented in a model predictive control (MPC) fashion. To validate the proposed approach for hybrid motion generation, two scenarios involving different types of obstacles are designed in simulation. To the best of our knowledge, this is the first time that such online dynamic hybrid locomotion has been demonstrated on wheeled biped robots.
This paper studies jumping for wheeled-bipedal robots, a motion that takes full advantage of the benefits from the hybrid wheeled and legged design features. A comprehensive hierarchical scheme for motion planning and control of jumping with wheeled-
Planning smooth and energy-efficient motions for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, a wide variety of motion planners, steer functions
Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots.
Euclidean Signed Distance Field (ESDF) is useful for online motion planning of aerial robots since it can easily query the distance and gradient information against obstacles. Fast incrementally built ESDF map is the bottleneck for conducting real-ti
This paper presents a search-based partial motion planner to generate dynamically feasible trajectories for car-like robots in highly dynamic environments. The planner searches for smooth, safe, and near-time-optimal trajectories by exploring a state