ﻻ يوجد ملخص باللغة العربية
Brouwers Conjecture states that, for any graph $G$, the sum of the $k$ largest (combinatorial) Laplacian eigenvalues of $G$ is at most $|E(G)| + binom{k+1}{2}$, $1 leq k leq n$. We present several interrelated results establishing Brouwers conjecture $text{BC}_k(G)$ for a wide range of graphs $G$ and parameters $k$. In particular, we show that (1) $text{BC}_k(G)$ is true for low-arboricity graphs, and in particular for planar $G$ when $k geq 11$; (2) $text{BC}_k(G)$ is true whenever the variance of the degree sequence is not very high, generalizing previous results for $G$ regular or random; (3) $text{BC}_k(G)$ is true if $G$ belongs to a hereditarily spectrally-bounded class and $k$ is sufficiently large as a function of $k$, in particular $k geq sqrt{32n}$ for bipartite graphs; (4) $text{BC}_k(G)$ holds unless $G$ has edge-edit distance $< k sqrt{2n} = O(n^{3/2})$ from a split graph; (5) no $G$ violates the conjectured upper bound by more than $O(n^{5/4})$, and bipartite $G$ by no more than $O(n)$; and (6) $text{BC}_k(G)$ holds for all $k$ outside an interval of length $O(n^{3/4})$. Furthermore, we present a surprising negative result: asymptotically almost surely, a uniform random signed complete graph violates the conjectured bound by $Omega(n)$.
The spectrum of the normalized graph Laplacian yields a very comprehensive set of invariants of a graph. In order to understand the information contained in those invariants better, we systematically investigate the behavior of this spectrum under lo
A connected graph $G$ is a cactus if any two of its cycles have at most one common vertex. Let $ell_n^m$ be the set of cacti on $n$ vertices with matching number $m.$ S.C. Li and M.J. Zhang determined the unique graph with the maximum signless Laplac
Determining and analyzing the spectra of graphs is an important and exciting research topic in theoretical computer science. The eigenvalues of the normalized Laplacian of a graph provide information on its structural properties and also on some rele
For dendrite graphs from biological experiments on mouses retinal ganglion cells, a paper by Nakatsukasa, Saito and Woei reveals a mysterious phase transition phenomenon in the spectra of the corresponding graph Laplacian matrices. While the bulk of
Let $G$ be a $k$-connected graph on $n$ vertices. Hippchens Conjecture states that two longest paths in $G$ share at least $k$ vertices. Gutierrez recently proved the conjecture when $kleq 4$ or $kgeq frac{n-2}{3}$. We improve upon both results; name