ترغب بنشر مسار تعليمي؟ اضغط هنا

On a conjecture for the signless Laplacian spectral radius of cacti with given matching number

170   0   0.0 ( 0 )
 نشر من قبل Lihua You
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A connected graph $G$ is a cactus if any two of its cycles have at most one common vertex. Let $ell_n^m$ be the set of cacti on $n$ vertices with matching number $m.$ S.C. Li and M.J. Zhang determined the unique graph with the maximum signless Laplacian spectral radius among all cacti in $ell_n^m$ with $n=2m$. In this paper, we characterize the case $ngeq 2m+1$. This confirms the conjecture of Li and Zhang(S.C. Li, M.J. Zhang, On the signless Laplacian index of cacti with a given number of pendant vetices, Linear Algebra Appl. 436, 2012, 4400--4411). Further, we characterize the unique graph with the maximum signless Laplacian spectral radius among all cacti on $n$ vertices.



قيم البحث

اقرأ أيضاً

123 - Xiying Yuan , Zhenan Shao 2021
Let $mathscr{G}_{n,beta}$ be the set of graphs of order $n$ with given matching number $beta$. Let $D(G)$ be the diagonal matrix of the degrees of the graph $G$ and $A(G)$ be the adjacency matrix of the graph $G$. The largest eigenvalue of the nonneg ative matrix $A_{alpha}(G)=alpha D(G)+A(G)$ is called the $alpha$-spectral radius of $G$. The graphs with maximal $alpha$-spectral radius in $mathscr{G}_{n,beta}$ are completely characterized in this paper. In this way we provide a general framework to attack the problem of extremal spectral radius in $mathscr{G}_{n,beta}$. More precisely, we generalize the known results on the maximal adjacency spectral radius in $mathscr{G}_{n,beta}$ and the signless Laplacian spectral radius.
Tur{a}n type extremal problem is how to maximize the number of edges over all graphs which do not contain fixed forbidden subgraphs. Similarly, spectral Tur{a}n type extremal problem is how to maximize (signless Laplacian) spectral radius over all gr aphs which do not contain fixed subgraphs. In this paper, we first present a stability result for $kcdot P_3$ in terms of the number of edges and then determine all extremal graphs maximizing the signless Laplacian spectral radius over all graphs which do not contain a fixed linear forest with at most two odd paths or $kcdot P_3$ as a subgraph, respectively.
Let $F_{a_1,dots,a_k}$ be a graph consisting of $k$ cycles of odd length $2a_1+1,dots, 2a_k+1$, respectively which intersect in exactly a common vertex, where $kgeq1$ and $a_1ge a_2ge cdotsge a_kge 1$. In this paper, we present a sharp upper bound fo r the signless Laplacian spectral radius of all $F_{a_1,dots,a_k}$-free graphs and characterize all extremal graphs which attain the bound. The stability methods and structure of graphs associated with the eigenvalue are adapted for the proof.
Let $S_{1}(m, d, k)$ be the $k$-uniform supertree obtained from a loose path $P:v_{1}, e_{1}, v_{2}, ldots,v_{d}, e_{d}, v_{d+1}$ with length $d$ by attaching $m-d$ edges at vertex $v_{lfloorfrac{d}{2}rfloor+1}.$ Let $mathbb{S}(m,d,k)$ be the set of $k$-uniform supertrees with $m$ edges and diameter $d$ and $q(G)$ be the signless Laplacian spectral radius of a $k$-uniform hypergraph $G$. In this paper, we mainly determine $S_{1}(m,d,k)$ with the largest signless Laplacian spectral radius among all supertrees in $mathbb{S}(m,d,k)$ for $3leq dleq m-1$. Furthermore, we determine the unique uniform supertree with the maximum signless Laplacian spectral radius among all the uniform supertrees with $n$ vertices and pendent edges (vertices).
In this paper, we present a spectral sufficient condition for a graph to be Hamilton-connected in terms of signless Laplacian spectral radius with large minimum degree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا