ترغب بنشر مسار تعليمي؟ اضغط هنا

Electron-Doping Effect on Tc in the Undoped (Ce-Free) Superconductor T-La1.8Eu0.2CuO4 Studied by the Fluorine Substitution for Oxygen

193   0   0.0 ( 0 )
 نشر من قبل Takayuki Kawamata
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have succeeded in synthesizing electron-doped polycrystalline bulk samples of T-La1.8Eu0.2CuO4-yFy (y = 0 - 0.15) by the fluorination of undoped (Ce-free) T-La1.8Eu0.2CuO4 using NH4F. The magnetic susceptibility measurements have revealed that the superconducting transition temperature, Tc, increases with increasing y, exhibits the maximum of 23 K at y = 0.025, and decreases. The dome-like dependence of Tc on the doped carrier concentration in the T-type (La,Eu)-based cuprates is explained in terms of the pairing mediated by spin fluctuations based on the d-p model calculation [K. Yamazaki et al., J. Phys.: Conf. Ser. 871, 012009 (2017)].



قيم البحث

اقرأ أيضاً

In order to investigate the electronic state of Ce-free and Ce-underdoped high-Tc cuprates with the so-called T structure, we have performed muon-spin-relaxation (muSR) and specific-heat measurements of Ce-free T-La_1.8_Eu_0.2_CuO_4+d_ (T-LECO) polyc rystals and Ce-underdoped T-Pr_1.3-x_La_0.7_Ce_x_CuO_4+d_ (T-PLCCO) single crystals with x=0.10. The muSR spectra of the reduced superconducting samples of both T-LECO with Tc=15K and T-PLCCO with x=0.10 and Tc=27K have revealed that a short-range magnetic order coexists with the superconductivity in the ground state. The formation of a short-range magnetic order due to a tiny amount of excess oxygen in the reduced superconducting samples strongly suggest that the Ce-free and Ce-underdoped T-cuprates are regarded as strongly correlated electron systems.
Transport properties of Nd$_{2-x}$Ce$_x$CuO$_{4+delta}$ single crystal films are investigated in magnetic fields $B$ up to 9T at $T$=(0.4-4.2)K. An analysis of normal state (at $B>B_{c2}$) Hall coefficient $R_H$$^n$ dependence on Ce doping takes us t o a conclusion about the existence both of electron-like and hole-like contributions to transport in nominally electron-doped system. In accordance with $R_H$$^n$(x) analysis an anomalous sign reversal of Hall effect in mixed state at $B<B_{c2}$ may be ascribed to a flux-flow regime for two types of carriers with opposite charges.
We have investigated the effects of magnetic Ni and nonmagnetic Zn impurities on the superconductivity in undoped T-La$_{1.8}$Eu$_{0.2}$CuO$_4$ (T-LECO) with the Nd$_2$CuO$_4$-type structure, using the polycrystalline bulk samples, to clarify the pai ring symmetry. It has been found that both suppression rates of the superconducting transition temperature $T_mathrm{c}$ by Ni and Zn impurities are nearly the same and are very similar to those in the optimally doped and overdoped regimes of hole-doped T-La$_{2-x}$Sr$_{x}$CuO$_4$ with the K$_2$NiF$_4$-type structure. These results strongly suggest that the superconductivity in undoped T-LECO is of the $d$-wave symmetry and is mediated by the spin fluctuation.
We report on the effect of substitution for Cu on Tc of electron-doped infinite-layer superconductors Sr0.9La0.1Cu1-xRxO2, R = Zn and Ni. We found that Tc was nearly constant until x = 0.03 for R = Zn, while superconductivity was nearly suppressed fo r x = 0.02 with dTc/dx = 20 K/% for R = Ni. This behavior is very similar to that of conventional superconductors. These findings are discussed in terms of the superconducting gap symmetry in the cuprate superconductors including another electron-doped superconductor, (Nd,Ce)2CuO4-y.
Angle-resolved photoemission spectroscopy (ARPES) reveals effects of electron doping, which is realized by Co and Ni substitution for Fe in FeTe$_{1-y}$Se$_{y}$ (y$sim$0.35) superconductor. The data show consistent band shifts as well as expansion an d shrinking of electron and hole Fermi surface, respectively. Doping of either element leads to a Lifshitz transition realized as a removal of one or two hole pockets. This explains qualitatively a complex behavior of Hall coefficient observed before [Bezusyy, et al., Phys. Rev. B 91, 100502 (2015)], including change of sign with doping, which takes place only below room temperature. Assuming that Ni substitution should deliver twice more electrons to the valence band than Co, it appears that such transfer is slightly more effective in the case of Co. Therefore, charge doping cannot account for much stronger effect of Ni on superconducting and transport properties [Bezusyy, et al., Phys. Rev. B 91, 100502 (2015)]. Although overall band shifts are roughly proportional to the amount of dopant, clear deviations from a rigid band shift scenario are found. The shape of electron pockets becomes elliptical only for Ni doping, effective mass of electron bands increases with doping, strong reduction of effective mass is observed for one of hole bands of the undoped system. The topology of hole and electron pockets for superconducting Fe$_{1.01}$Te$_{0.67}$Se$_{0.33}$ with T$_{c}$=13.6 K indicates a deviation from nesting. Co and Ni doping causes further departure from nesting, which accompanies the reduction of critical temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا