ﻻ يوجد ملخص باللغة العربية
We provide a simple proof of convergence covering both the Adam and Adagrad adaptive optimization algorithms when applied to smooth (possibly non-convex) objective functions with bounded gradients. We show that in expectation, the squared norm of the objective gradient averaged over the trajectory has an upper-bound which is explicit in the constants of the problem, parameters of the optimizer and the total number of iterations $N$. This bound can be made arbitrarily small: Adam with a learning rate $alpha=1/sqrt{N}$ and a momentum parameter on squared gradients $beta_2=1-1/N$ achieves the same rate of convergence $O(ln(N)/sqrt{N})$ as Adagrad. Finally, we obtain the tightest dependency on the heavy ball momentum among all previous convergence bounds for non-convex Adam and Adagrad, improving from $O((1-beta_1)^{-3})$ to $O((1-beta_1)^{-1})$. Our technique also improves the best known dependency for standard SGD by a factor $1 - beta_1$.
In this paper, we focus on a theory-practice gap for Adam and its variants (AMSgrad, AdamNC, etc.). In practice, these algorithms are used with a constant first-order moment parameter $beta_{1}$ (typically between $0.9$ and $0.99$). In theory, regret
The overall performance or expected excess risk of an iterative machine learning algorithm can be decomposed into training error and generalization error. While the former is controlled by its convergence analysis, the latter can be tightly handled b
We describe a simple, low-level approach for embedding probabilistic programming in a deep learning ecosystem. In particular, we distill probabilistic programming down to a single abstraction---the random variable. Our lightweight implementation in T
We consider an underdetermined noisy linear regression model where the minimum-norm interpolating predictor is known to be consistent, and ask: can uniform convergence in a norm ball, or at least (following Nagarajan and Kolter) the subset of a norm
Stochastic gradient descent with backpropagation is the workhorse of artificial neural networks. It has long been recognized that backpropagation fails to be a biologically plausible algorithm. Fundamentally, it is a non-local procedure -- updating o