ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of Deep Neural Networks to assess corporate Credit Rating

84   0   0.0 ( 0 )
 نشر من قبل Dan Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent literature implements machine learning techniques to assess corporate credit rating based on financial statement reports. In this work, we analyze the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poors. We analyze companies from the energy, financial and healthcare sectors in US. The goal of the analysis is to improve application of machine learning algorithms to credit assessment. To this end, we focus on three questions. First, we investigate if the algorithms perform better when using a selected subset of features, or if it is better to allow the algorithms to select features themselves. Second, is the temporal aspect inherent in financial data important for the results obtained by a machine learning algorithm? Third, is there a particular neural network architecture that consistently outperforms others with respect to input features, sectors and holdout set? We create several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedure.



قيم البحث

اقرأ أيضاً

In Artificial Intelligence, interpreting the results of a Machine Learning technique often termed as a black box is a difficult task. A counterfactual explanation of a particular black box attempts to find the smallest change to the input values that modifies the prediction to a particular output, other than the original one. In this work we formulate the problem of finding a counterfactual explanation as an optimization problem. We propose a new sparsity algorithm which solves the optimization problem, while also maximizing the sparsity of the counterfactual explanation. We apply the sparsity algorithm to provide a simple suggestion to publicly traded companies in order to improve their credit ratings. We validate the sparsity algorithm with a synthetically generated dataset and we further apply it to quarterly financial statements from companies in financial, healthcare and IT sectors of the US market. We provide evidence that the counterfactual explanation can capture the nature of the real statement features that changed between the current quarter and the following quarter when ratings improved. The empirical results show that the higher the rating of a company the greater the effort required to further improve credit rating.
We propose a novel credit default model that takes into account the impact of macroeconomic information and contagion effect on the defaults of obligors. We use a set-valued Markov chain to model the default process, which is the set of all defaulted obligors in the group. We obtain analytic characterizations for the default process, and use them to derive pricing formulas in explicit forms for synthetic collateralized debt obligations (CDOs). Furthermore, we use market data to calibrate the model and conduct numerical studies on the tranche spreads of CDOs. We find evidence to support that systematic default risk coupled with default contagion could have the leading component of the total default risk.
We introduce the general arbitrage-free valuation framework for counterparty risk adjustments in presence of bilateral default risk, including default of the investor. We illustrate the symmetry in the valuation and show that the adjustment involves a long position in a put option plus a short position in a call option, both with zero strike and written on the residual net value of the contract at the relevant default times. We allow for correlation between the default times of the investor, counterparty and underlying portfolio risk factors. We use arbitrage-free stochastic dynamical models. We then specialize our analysis to Credit Default Swaps (CDS) as underlying portfolio, generalizing the work of Brigo and Chourdakis (2008) [5] who deal with unilateral and asymmetric counterparty risk. We introduce stochastic intensity models and a trivariate copula function on the default times exponential variables to model default dependence. Similarly to [5], we find that both default correlation and credit spread volatilities have a relevant and structured impact on the adjustment. Differently from [5], the two parties will now agree on the credit valuation adjustment. We study a case involving British Airways, Lehman Brothers and Royal Dutch Shell, illustrating the bilateral adjustments in concrete crisis situations.
The 2008 financial crisis has been attributed to excessive complexity of the financial system due to financial innovation. We employ computational complexity theory to make this notion precise. Specifically, we consider the problem of clearing a fina ncial network after a shock. Prior work has shown that when banks can only enter into simple debt contracts with each other, then this problem can be solved in polynomial time. In contrast, if they can also enter into credit default swaps (CDSs), i.e., financial derivative contracts that depend on the default of another bank, a solution may not even exist. In this work, we show that deciding if a solution exists is NP-complete if CDSs are allowed. This remains true if we relax the problem to $varepsilon$-approximate solutions, for a constant $varepsilon$. We further show that, under sufficient conditions where a solution is guaranteed to exist, the approximate search problem is PPAD-complete for constant $varepsilon$. We then try to isolate the origin of the complexity. It turns out that already determining which banks default is hard. Further, we show that the complexity is not driven by the dependence of counterparties on each other, but rather hinges on the presence of so-called naked CDSs. If naked CDSs are not present, we receive a simple polynomial-time algorithm. Our results are of practical importance for regulators stress tests and regulatory policy.
This work presents a theoretical and empirical evaluation of Anderson-Darling test when the sample size is limited. The test can be applied in order to backtest the risk factors dynamics in the context of Counterparty Credit Risk modelling. We show t he limits of such test when backtesting the distributions of an interest rate model over long time horizons and we propose a modified version of the test that is able to detect more efficiently an underestimation of the models volatility. Finally we provide an empirical application.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا