ترغب بنشر مسار تعليمي؟ اضغط هنا

An averaging approach to the Smoluchowski-Kramers approximation in the presence of a varying magnetic field

168   0   0.0 ( 0 )
 نشر من قبل Sandra Cerrai
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the small mass limit of the equation describing planar motion of a charged particle of a small mass $mu$ in a force field, containing a magnetic component, perturbed by a stochastic term. We regularize the problem by adding a small friction of intensity $e>0$. We show that for all small but fixed frictions the small mass limit of $q_{mu, e}$ gives the solution $q_e$ to a stochastic first order equation, containing a noise-induced drift term. Then, by using a generalization of the classical averaging theorem for Hamiltonian systems by Freidlin and Wentzell, we take the limit of the slow component of the motion $q_e$ and we prove that it converges weakly to a Markov process on the graph obtained by identifying all points in the same connected components of the level sets of the magnetic field intensity function.

قيم البحث

اقرأ أيضاً

58 - Elena Floriani 2021
We apply Bogolyubovs averaging theorem to the motion of an electron of an atom driven by a linearly polarized laser field in the Kramers-Henneberger frame. We provide estimates of the differences between the original trajectories and the trajectories associated with the averaged system as a function of the parameters of the laser field and the region of phase space. We formulate a modified Bogolyubov averaging theorem based on the Hamiltonian properties of the system, and show that this version is better suited for these systems. From these estimates, we discuss the validity of the Kramers-Henneberger approximation.
The Smoluchowski equation is a system of partial differential equations modelling the diffusion and binary coagulation of a large collection of tiny particles. The mass parameter may be indexed either by positive integers, or by positive reals, these corresponding to the discrete or the continuous form of the equations. In dimension at least 3, we derive the continuous Smoluchowski PDE as a kinetic limit of a microscopic model of Brownian particles liable to coalesce, using a similar method to that used to derive the discrete form of the equations in Hammond and Rezakhanlou [4]. The principal innovation is a correlation-type bound on particle locations that permits the derivation in the continuous context while simplifying the arguments of [4]. We also comment on the scaling satisfied by the continuous Smoluchowski PDE, and its potential implications for blow-up of solutions of the equations.
The classical relationship between the Tutte polynomial of graph theory and the Potts model of statistical mechanics has resulted in valuable interactions between the disciplines. Unfortunately, it does not include the external magnetic fields that a ppear in most Potts model applications. Here we define the V-polynomial, which lifts the classical relationship between the Tutte polynomial and the zero field Potts model to encompass external magnetic fields. The V-polynomial generalizes Nobel and Welshs W-polynomial, which extends the Tutte polynomial by incorporating vertex weights and adapting contraction to accommodate them. We prove that the variable field Potts model partition function (with its many specializations) is an evaluation of the V-polynomial, and hence a polynomial with deletion-contraction reduction and Fortuin-Kasteleyn type representation. This unifies an important segment of Potts model theory and brings previously successful combinatorial machinery, including complexity results, to bear on a wider range of statistical mechanics models.
81 - Pok Man Lo 2020
We study the impact of a finite magnetic field on the deconfinement phase transition for heavy quarks by computing the fluctuations of the Polyakov loops. It is demonstrated that the explicit Z(3) breaking field increases with the magnetic field, lea ding to a decrease in the (pseudo) critical temperatures and a shrinking first-order region in the phase diagram. Phenomenological equations that capture the behaviors of the Z(3) breaking field at strong and weak magnetic fields for massive and massless quarks are given. Lastly, we explore the case of dynamical light quarks and demonstrate how an improved constituent quark mass function can enforce the correct magnetic field dependence of the deconfinement temperature in an effective model, as observed in Lattice QCD calculations.
65 - Sangyun Lee , Chulan Kwon 2019
We investigate a motion of a colloid in a harmonic trap driven out of equilibrium by an external non-conservative force producing a torque in the presence of a uniform magnetic field. We find that steady state exists only for a proper range of parame ters such as mass, viscosity coefficient, and stiffness of the harmonic potential, and the magnetic field, which is not observed in the overdamped limit. We derive the existence condition for the steady state. We examine the combined influence of the non-conservative force and the magnetic field on non-equilibrium characteristics such as non-Boltzmann steady-state probability distribution function, probability currents, entropy production, position-velocity correlation, and violation of fluctuation-dissipation relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا