ترغب بنشر مسار تعليمي؟ اضغط هنا

Deconfinement in the presence of a strong magnetic field

82   0   0.0 ( 0 )
 نشر من قبل Pok Man Lo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Pok Man Lo




اسأل ChatGPT حول البحث

We study the impact of a finite magnetic field on the deconfinement phase transition for heavy quarks by computing the fluctuations of the Polyakov loops. It is demonstrated that the explicit Z(3) breaking field increases with the magnetic field, leading to a decrease in the (pseudo) critical temperatures and a shrinking first-order region in the phase diagram. Phenomenological equations that capture the behaviors of the Z(3) breaking field at strong and weak magnetic fields for massive and massless quarks are given. Lastly, we explore the case of dynamical light quarks and demonstrate how an improved constituent quark mass function can enforce the correct magnetic field dependence of the deconfinement temperature in an effective model, as observed in Lattice QCD calculations.



قيم البحث

اقرأ أيضاً

Fluidity of quark-gluon plasma (QGP) is studied where interaction between quark and gluon is mapped through fugacity in particle distribution function using lattice quantum chromodynamics (LQCD) results.
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon sel f-energy, which in the sequel gives the the effective gluon propagator. As an artifact of strong magnetic field approximation ($eB>>T^2$ and $eB>>m^2$), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meagre and becomes independent of temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark ($Q$) and anti-quark ($bar Q$) is obtained in a hot QCD medium in the presence of strong magnetic field by correcting both short and long range components of the potential in real-time formalism. It is found that the long range part of the quarkonium potential is affected much more by magnetic field as compared to the short range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind $Qbar Q$ together. For example, the $J/psi$ is dissociated at $eB sim$ 10 $m_pi^2$ and $Upsilon$ is dissociated at $eB sim$ 100 $m_pi^2$ whereas its excited states, $psi^prime$ and $Upsilon^prime$ are dissociated at smaller magnetic field $eB= m_pi^2$, $13 m_pi^2$, respectively.
Effect of quantum chromodynamics (QCD) interaction in quark-gluon plasma on electrical conductivity is studied, where lattice quantum chromodynamics (LQCD) results are mapped through quark and gluon degeneracy.
We have explored the shear viscosity and electrical conductivity calculations for bosonic and fermionic medium, which goes from without to with magnetic field picture and then their simplified massless expressions. In presence of magnetic field, 5 in dependent velocity gradient tensors can be designed, so their corresponding proportional coefficients, connected with the viscous stress tensor provide us 5 shear viscosity coefficients. In existing litterateurs, two sets of tensors are available. Starting from them, present work has obtained two sets of expressions for 5 shear viscosity coefficients, which can be ultimately classified into three basic components: parallel, perpendicular and Hall components as one get same for electrical conductivity at finite magnetic field. Our calculations are based on kinetic theory approach in relaxation time approximation. Repeating same mathematical steps for finite magnetic field picture, which traditionally practiced for without field case, we have obtained 2 sets of 5 shear viscosity components, whose final expressions are in well agreements with earlier references, although a difference in methodology or steps can be clearly noticed. Realizing the massless results of viscosity and conductivity for Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein distribution function, we have applied them for massless quark gluon plasma and hadronic matter phases, which can provide us a rough order of strength, within which actual results will vary during quark-hadron phase transition. Present work also indicates that magnetic field might have some role for building perfect fluid nature in RHIC or LHC matter. The lower bound expectation of shear viscosity to entropy density ratio is also discussed.
Non-central heavy-ion collisions at ultra-relativistic energies are unique in producing magnetic fields of the largest strength in the laboratory. Such fields being produced at the early stages of the collision, could affect the properties of Quantum Chromodynamics (QCD) matter formed in the relativistic heavy-ion collisions. The transient magnetic field leaves its reminiscence, which in principle, can affect the thermodynamic and transport properties of the final state dynamics of the system. In this work, we study the thermodynamic properties of a hadron gas in the presence of an external static magnetic field using a thermodynamically consistent non-extensive Tsallis distribution function. Various thermodynamical observables such as polytropic index, energy density ($epsilon$), entropy density ($s$), pressure ($P$) and speed of sound ($c_{rm s}$) are studied. Investigation of magnetization ($M$) is also performed and this analysis reveals an interplay of diamagnetic and paramagnetic nature of the system in presence of the magnetic field of varying strength. Further to understand the system dynamics under equilibrium and non-equilibrium conditions, the effect of non-extensive parameter ($q$) on the above observables is also studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا