ﻻ يوجد ملخص باللغة العربية
This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finettis representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one.
We present a novel proof of de Finettis Theorem characterizing permutation-invariant probability measures of infinite sequences of variables, so-called exchangeable measures. The proof is phrased in the language of Markov categories, which provide an
Ultrafilters are useful mathematical objects having applications in nonstandard analysis, Ramsey theory, Boolean algebra, topology, and other areas of mathematics. In this note, we provide a categorical construction of ultrafilters in terms of the in
Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of
Under a general categorical procedure for the extension of dual equivalences as presented in this papers predecessor, a new algebraically defined category is established that is dually equivalent to the category $bf LKHaus$ of locally compact Hausdor
A sequence of random variables is called exchangeable if the joint distribution of the sequence is unchanged by any permutation of the indices. De Finettis theorem characterizes all ${0,1}$-valued exchangeable sequences as a mixture of sequences of i