ﻻ يوجد ملخص باللغة العربية
Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products $bigotimes_{i in J} X_i$ come in t
This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finettis representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad.
Let $(X_1,dots,X_m)$ be self-adjoint non-commutative random variables distributed according to the free Gibbs law given by a sufficiently regular convex and semi-concave potential $V$, and let $(S_1,dots,S_m)$ be a free semicircular family. We show t
We discuss the relationship between (co)homology groups and categorical diagonalization. We consider the category of chain complexes in the category of finitely generated free modules on a commutative ring. For a fixed chain complex with zero maps as
In this paper, we use a categorical and functorial set up to model the syntax and inference of logics of algebraic signature, extending previous works on algebraisation of logics. The main feature of this work is that structurality, or invariance und
We prove game-theoretic generalizations of some well known zero-one laws. Our proofs make the martingales behind the laws explicit, and our results illustrate how martingale arguments can have implications going beyond measure-theoretic probability.