ﻻ يوجد ملخص باللغة العربية
A generalised Postnikov tower for a space $X$ is a tower of principal fibrations with fibres generalised Eilenberg-MacLane spaces, whose inverse limit is weakly homotopy equivalent to $X$. In this paper we give a characterisation of a polyhedral product $Z_K(X,A)$ whose universal cover either admits a generalised Postnikov tower of finite length, or is a homotopy retract of a space admitting such a tower. We also include $p$-local and ration
Polyhedral products were defined by Bahri, Bendersky, Cohen and Gitler, to be spaces obtained as unions of certain product spaces indexed by the simplices of an abstract simplicial complex. In this paper we give a very general homotopy theoretic cons
A panel structure on a topological space is just a locally finite family of closed subspaces. A space together with a panel structure is called a space with faces. In this paper, we define the notion of polyhedral product over a space with faces. Thi
Picard 2-categories are symmetric monoidal 2-categories with invertible 0-, 1-, and 2-cells. The classifying space of a Picard 2-category $mathcal{D}$ is an infinite loop space, the zeroth space of the $K$-theory spectrum $Kmathcal{D}$. This spectrum
The construction of a simplicial complex given by polyhedral joins (introduced by Anton Ayzenberg), generalizes Bahri, Bendersky, Cohen and Gitlers $J$-construction and simplicial wedge construction. This article gives a cohomological decomposition o
We characterize H-spaces which are p-torsion Postnikov pieces of finite type by a cohomological property together with a necessary acyclicity condition. When the mod p cohomology of an H-space is finitely generated as an algebra over the Steenrod alg