ترغب بنشر مسار تعليمي؟ اضغط هنا

Stable Postnikov data of Picard 2-categories

182   0   0.0 ( 0 )
 نشر من قبل Niles Johnson
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Picard 2-categories are symmetric monoidal 2-categories with invertible 0-, 1-, and 2-cells. The classifying space of a Picard 2-category $mathcal{D}$ is an infinite loop space, the zeroth space of the $K$-theory spectrum $Kmathcal{D}$. This spectrum has stable homotopy groups concentrated in levels 0, 1, and 2. In this paper, we describe part of the Postnikov data of $Kmathcal{D}$ in terms of categorical structure. We use this to show that there is no strict skeletal Picard 2-category whose $K$-theory realizes the 2-truncation of the sphere spectrum. As part of the proof, we construct a categorical suspension, producing a Picard 2-category $Sigma C$ from a Picard 1-category $C$, and show that it commutes with $K$-theory in that $KSigma C$ is stably equivalent to $Sigma K C$.

قيم البحث

اقرأ أيضاً

156 - Nick Gurski , Niles Johnson , 2015
We establish an equivalence of homotopy theories between symmetric monoidal bicategories and connective spectra. For this, we develop the theory of $Gamma$-objects in 2-categories. In the course of the proof we establish strictfication results of ind ependent interest for symmetric monoidal bicategories and for diagrams of 2-categories.
We prove the equivalence of several hypotheses that have appeared recently in the literature for studying left Bousfield localization and algebras over a monad. We find conditions so that there is a model structure for local algebras, so that localiz ation preserves algebras, and so that localization lifts to the level of algebras. We include examples coming from the theory of colored operads, and applications to spaces, spectra, and chain complexes.
We give an explicit point-set construction of the Dennis trace map from the $K$-theory of endomorphisms $Kmathrm{End}(mathcal{C})$ to topological Hochschild homology $mathrm{THH}(mathcal{C})$ for any spectral Waldhausen category $mathcal{C}$. We desc ribe the necessary technical foundations, most notably a well-behaved model for the spectral category of diagrams in $mathcal{C}$ indexed by an ordinary category via the Moore end. This is applied to define a version of Waldhausens $S_{bullet}$-construction for spectral Waldhausen categories, which is central to this account of the Dennis trace map. Our goals are both convenience and transparency---we provide all details except for a proof of the additivity theorem for $mathrm{THH}$, which is taken for granted---and the exposition is concerned not with originality of ideas, but rather aims to provide a useful resource for learning about the Dennis trace and its underlying machinery.
While not obvious from its initial motivation in linear algebra, there are many context where iterated traces can be defined. In this paper we prove a very general theorem about iterated 2-categorical traces. We show that many Lefschetz-type theorems in the literature are consequences of this result and the new perspective we provide allows for immediate spectral generalizations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا