ترغب بنشر مسار تعليمي؟ اضغط هنا

Scaling MAP-Elites to Deep Neuroevolution

100   0   0.0 ( 0 )
 نشر من قبل C\\'edric Colas
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quality-Diversity (QD) algorithms, and MAP-Elites (ME) in particular, have proven very useful for a broad range of applications including enabling real robots to recover quickly from joint damage, solving strongly deceptive maze tasks or evolving robot morphologies to discover new gaits. However, present implementations of MAP-Elites and other QD algorithms seem to be limited to low-dimensional controllers with far fewer parameters than modern deep neural network models. In this paper, we propose to leverage the efficiency of Evolution Strategies (ES) to scale MAP-Elites to high-dimensional controllers parameterized by large neural networks. We design and evaluate a new hybrid algorithm called MAP-Elites with Evolution Strategies (ME-ES) for post-damage recovery in a difficult high-dimensional control task where traditional ME fails. Additionally, we show that ME-ES performs efficient exploration, on par with state-of-the-art exploration algorithms in high-dimensional control tasks with strongly deceptive rewards.



قيم البحث

اقرأ أيضاً

Quality-Diversity optimisation algorithms enable the evolution of collections of both high-performing and diverse solutions. These collections offer the possibility to quickly adapt and switch from one solution to another in case it is not working as expected. It therefore finds many applications in real-world domain problems such as robotic control. However, QD algorithms, like most optimisation algorithms, are very sensitive to uncertainty on the fitness function, but also on the behavioural descriptors. Yet, such uncertainties are frequent in real-world applications. Few works have explored this issue in the specific case of QD algorithms, and inspired by the literature in Evolutionary Computation, mainly focus on using sampling to approximate the true value of the performances of a solution. However, sampling approaches require a high number of evaluations, which in many applications such as robotics, can quickly become impractical. In this work, we propose Deep-Grid MAP-Elites, a variant of the MAP-Elites algorithm that uses an archive of similar previously encountered solutions to approximate the performance of a solution. We compare our approach to previously explored ones on three noisy tasks: a standard optimisation task, the control of a redundant arm and a simulated Hexapod robot. The experimental results show that this simple approach is significantly more resilient to noise on the behavioural descriptors, while achieving competitive performances in terms of fitness optimisation, and being more sample-efficient than other existing approaches.
The structure and performance of neural networks are intimately connected, and by use of evolutionary algorithms, neural network structures optimally adapted to a given task can be explored. Guiding such neuroevolution with additional objectives rela ted to network structure has been shown to improve performance in some cases, especially when modular neural networks are beneficial. However, apart from objectives aiming to make networks more modular, such structural objectives have not been widely explored. We propose two new structural objectives and test their ability to guide evolving neural networks on two problems which can benefit from decomposition into subtasks. The first structural objective guides evolution to align neural networks with a user-recommended decomposition pattern. Intuitively, this should be a powerful guiding target for problems where human users can easily identify a structure. The second structural objective guides evolution towards a population with a high diversity in decomposition patterns. This results in exploration of many different ways to decompose a problem, allowing evolution to find good decompositions faster. Tests on our target problems reveal that both methods perform well on a problem with a very clear and decomposable structure. However, on a problem where the optimal decomposition is less obvious, the structural diversity objective is found to outcompete other structural objectives -- and this technique can even increase performance on problems without any decomposable structure at all.
Mixed-precision quantization is a powerful tool to enable memory and compute savings of neural network workloads by deploying different sets of bit-width precisions on separate compute operations. Recent research has shown significant progress in app lying mixed-precision quantization techniques to reduce the memory footprint of various workloads, while also preserving task performance. Prior work, however, has often ignored additional objectives, such as bit-operations, that are important for deployment of workloads on hardware. Here we present a flexible and scalable framework for automated mixed-precision quantization that optimizes multiple objectives. Our framework relies on Neuroevolution-Enhanced Multi-Objective Optimization (NEMO), a novel search method, to find Pareto optimal mixed-precision configurations for memory and bit-operations objectives. Within NEMO, a population is divided into structurally distinct sub-populations (species) which jointly form the Pareto frontier of solutions for the multi-objective problem. At each generation, species are re-sized in proportion to the goodness of their contribution to the Pareto frontier. This allows NEMO to leverage established search techniques and neuroevolution methods to continually improve the goodness of the Pareto frontier. In our experiments we apply a graph-based representation to describe the underlying workload, enabling us to deploy graph neural networks trained by NEMO to find Pareto optimal configurations for various workloads trained on ImageNet. Compared to the state-of-the-art, we achieve competitive results on memory compression and superior results for compute compression for MobileNet-V2, ResNet50 and ResNeXt-101-32x8d. A deeper analysis of the results obtained by NEMO also shows that both the graph representation and the species-based approach are critical in finding effective configurations for all workloads.
117 - Antoine Cully 2020
Quality-Diversity (QD) optimisation is a new family of learning algorithms that aims at generating collections of diverse and high-performing solutions. Among those algorithms, the recently introduced Covariance Matrix Adaptation MAP-Elites (CMA-ME) algorithm proposes the concept of emitters, which uses a predefined heuristic to drive the algorithms exploration. This algorithm was shown to outperform MAP-Elites, a popular QD algorithm that has demonstrated promising results in numerous applications. In this paper, we introduce Multi-Emitter MAP-Elites (ME-MAP-Elites), an algorithm that directly extends CMA-ME and improves its quality, diversity and data efficiency. It leverages the diversity of a heterogeneous set of emitters, in which each emitter type improves the optimisation process in different ways. A bandit algorithm dynamically finds the best selection of emitters depending on the current situation. We evaluate the performance of ME-MAP-Elites on six tasks, ranging from standard optimisation problems (in 100 dimensions) to complex locomotion tasks in robotics. Our comparisons against CMA-ME and MAP-Elites show that ME-MAP-Elites is faster at providing collections of solutions that are significantly more diverse and higher performing. Moreover, in cases where no fruitful synergy can be found between the different emitters, ME-MAP-Elites is equivalent to the best of the compared algorithms.
This study suggests a new approach to EEG data classification by exploring the idea of using evolutionary computation to both select useful discriminative EEG features and optimise the topology of Artificial Neural Networks. An evolutionary algorithm is applied to select the most informative features from an initial set of 2550 EEG statistical features. Optimisation of a Multilayer Perceptron (MLP) is performed with an evolutionary approach before classification to estimate the best hyperparameters of the network. Deep learning and tuning with Long Short-Term Memory (LSTM) are also explored, and Adaptive Boosting of the two types of models is tested for each problem. Three experiments are provided for comparison using different classifiers: one for attention state classification, one for emotional sentiment classification, and a third experiment in which the goal is to guess the number a subject is thinking of. The obtained results show that an Adaptive Boosted LSTM can achieve an accuracy of 84.44%, 97.06%, and 9.94% on the attentional, emotional, and number datasets, respectively. An evolutionary-optimised MLP achieves results close to the Adaptive Boosted LSTM for the two first experiments and significantly higher for the number-guessing experiment with an Adaptive Boosted DEvo MLP reaching 31.35%, while being significantly quicker to train and classify. In particular, the accuracy of the nonboosted DEvo MLP was of 79.81%, 96.11%, and 27.07% in the same benchmarks. Two datasets for the experiments were gathered using a Muse EEG headband with four electrodes corresponding to TP9, AF7, AF8, and TP10 locations of the international EEG placement standard. The EEG MindBigData digits dataset was gathered from the TP9, FP1, FP2, and TP10 locations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا