ترغب بنشر مسار تعليمي؟ اضغط هنا

Curvature-Induced Skyrmion Mass

100   0   0.0 ( 0 )
 نشر من قبل Christina Psaroudaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the propagation of magnetic skyrmions on elastically deformable geometries by employing imaginary time quantum field theory methods. We demonstrate that the Euclidean action of the problem carries information of the elements of the surface space metric, and develop a description of the skyrmion dynamics in terms of a set of collective coordinates. We reveal that novel curvature-driven effects emerge in geometries with non-constant curvature, which explicitly break the translational invariance of flat space. In particular, for a skyrmion stabilized by a curvilinear defect, an inertia term and a pinning potential are generated by the varying curvature, while both of these terms vanish in the flat-space limit.

قيم البحث

اقرأ أيضاً

We propose a new method to generate magnetic skyrmions through spin-wave focusing in chiral ferromagnets.A lens is constructed to focus spin waves by a curved interface between two ferromagnetic thin films with different perpendicular magnetic anisot ropies. Based on the principle of identical magnonic path length, we derive the lens contour that can be either elliptical or hyperbolical depending on the magnon refractive index. Micromagnetic simulations are performed to verify the theoretical design. It is found that under proper condition magnetic skyrmions emerge near the focus point of the lens where the spin-wave intensity has been significantly enhanced. A close investigation shows that a magnetic droplet first forms and then converts to the skyrmion accompanying with a change of topological charge. Phase diagram about the amplitude and duration-time of the exciting field for skyrmion generation is obtained. Our findings would be helpful for designing novel spintronic devices combining the advantages of skyrmionics and magnonics.
Topological spin textures can be found in both two-dimensional and three-dimensional nanostructures, which are of great importance to advanced spintronic applications. Here we report the current-induced skyrmion tube dynamics in three-dimensional syn thetic antiferromagnetic (SyAF) bilayer and multilayer nanostructures. It is found that the SyAF skyrmion tube made of thinner sublayer skyrmions is more stable during its motion, which ensures that a higher speed of the skyrmion tube can be reached effectively at larger driving current. In the SyAF multilayer with a given total thickness, the current-induced deformation of the SyAF skyrmion tube decreases with an increasing number of interfaces; namely, the rigidity of the SyAF skyrmion tube with a given thickness increases with the number of ferromagnetic (FM) layers. For the SyAF multilayer with an even number of FM layers, the skyrmion Hall effect can be eliminated when the thicknesses of all FM layers are identical. Larger damping parameter leads to smaller deformation and slower speed of the SyAF skyrmion tube. Larger fieldlike torque leads to larger deformation and a higher speed of the SyAF skyrmion tube. Our results are useful for understanding the dynamic behaviors of three-dimensional topological spin textures and may provide guidelines for building SyAF spintronic devices.
The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled b y engineering a special type of periodic surface shape structure. Similar effects can be achieved by a significant surface roughness in the film. We show that in general the anisotropy can point in an arbitrary direction depending on the surface curvature. We provide simple examples of these periodic surface structures to demonstrate how to engineer particular anisotropies in the film.
151 - H. T. Wu , X. C. Hu , K. Y. Jing 2021
A magnetic skyrmion is a topological object that can exist as a solitary embedded in the vast ferromagnetic phase, or coexists with a group of its siblings in various stripy phases as well as skyrmion crystals (SkXs). Isolated skyrmions and skyrmions in an SkX are circular while a skyrmion in other phases is a stripe of various forms. Unexpectedly, the sizes of the three different types of skyrmions depend on material parameters differently. For chiral magnetic films with exchange stiffness constant $A$, the Dzyaloshinskii-Moriya interaction (DMI) strength $D$, and perpendicular magnetic anisotropy $K$, $kappaequivpi^2D^2/(16AK)=1$ separates isolated skyrmions from condensed skyrmion states. In contrast to isolated skyrmions whose size increases with $D/K$ and is insensitive to $kappall1$ and stripe skyrmions whose width increases with $A/D$ and is insensitive to $kappagg1$, the size of skyrmions in SkXs is inversely proportional to the square root of skyrmion number density and decreases with $A/D$. This finding has important implications in our search for stable smaller skyrmions at the room temperature in applications.
In this work, the current-induced inertial effects on skyrmions hosted in ferromagnetic systems are studied. {When the dynamics is considered beyond the particle-like description, magnetic skyrmions can deform due to a self-induced field. We perform Monte Carlo simulations to characterize the deformation of the skyrmion during its movement}. In the low-velocity regime, the deformation in the skyrmion shape is quantified by an effective inertial mass, which is related to the dissipative force. When skyrmions move faster, the large self-induced deformation triggers topological transitions. The transition is characterized by the proliferation of skyrmions and different total topological charge, which are obtained in terms of the skyrmion velocity. Our findings provide an alternative way to describe the skyrmion dynamics that take into account the deformations of its structure. Furthermore, the motion-induced topological phase transition brings the possibility to control the number of ferromagnetic skyrmions by velocity effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا