ﻻ يوجد ملخص باللغة العربية
We consider the minimal average action (Mathers $beta$ function) for area preserving twist maps of the annulus. The regularity properties of this function share interesting relations with the dynamics of the system. We prove that the $beta$-function associated to a standard-like twist map admits a unique $C^1$-holomorphic complex extension, which coincides with this function on the set of real diophantine frequencies.
For strictly convex billiard maps of smooth boundaries, we get a Birkhoff normal form via a list of constructive generating functions. Based on this, we get an explicit formula for the beta function (locally), and explored the relation between the sp
Poincares last geometric theorem (Poincare-Birkhoff Theorem) states that any area-preserving twist map of annulus has at least two fixed points. We replace the area-preserving condition with a weaker intersection property, which states that any essen
We study the run length function for intermittency maps. In particular, we show that the longest consecutive zero digits (resp. one digits) having a time window of polynomial (resp. logarithmic) length. Our proof is relatively elementary in the sense
We show that the definition of parabolic-like map can be slightly modified, by asking $partial Delta$ to be a quasiarc out of the parabolic fixed point, instead of the dividing arcs to be $C^1$ on $[-1,0]$ and $[0,1]$.
In this paper, we show that for exact area-preserving twist maps on annulus, the invariant circles with a given rotation number can be destroyed by arbitrarily small Gevrey-$alpha$ perturbations of the integrable generating function in the $C^r$ topology with $r<4-frac{2}{alpha}$, where $alpha>1$.