ﻻ يوجد ملخص باللغة العربية
We show that the definition of parabolic-like map can be slightly modified, by asking $partial Delta$ to be a quasiarc out of the parabolic fixed point, instead of the dividing arcs to be $C^1$ on $[-1,0]$ and $[0,1]$.
We prove that any $C^{1+BV}$ degree $d geq 2$ circle covering $h$ having all periodic orbits weakly expanding, is conjugate in the same smoothness class to a metrically expanding map. We use this to connect the space of parabolic external maps (comin
We study the run length function for intermittency maps. In particular, we show that the longest consecutive zero digits (resp. one digits) having a time window of polynomial (resp. logarithmic) length. Our proof is relatively elementary in the sense
We provide an abstract framework for the study of certain spectral properties of parabolic systems; specifically, we determine under which general conditions to expect the presence of absolutely continuous spectral measures. We use these general cond
In this paper we consider families of holomorphic maps defined on subsets of the complex plane, and show that the technique developed in cite{LSvS1} to treat unfolding of critical relations can also be used to deal with cases where the critical orbit
Mehta and Seshadri have proved that the set of equivalence classes of irreducible unitary representations of the fundamental group of a punctured compact Riemann surface, can be identified with equivalence classes of stable parabolic bundles of parab