ﻻ يوجد ملخص باللغة العربية
A method based on the Gibbs adsorption isotherm is developed to calculate the decrease in interfacial free energy resulting from solute segregation at an internal interface, built on measured concentration profiles. Utilizing atom-probe tomography (APT), we first measure a concentration profile of the relative interfacial excess of solute atoms across an interface. To accomplish this we utilize a new method based on J. W. Cahns formalism for the calculation of the Gibbs interfacial excess. We also introduce a method to calculate the decrease in interfacial free energy that is caused by the segregating solute atoms. This method yields a discrete profile of the decrease in interfacial free energies, which takes into account the measured concentration profile and calculated Gibbsian excess profile. We demonstrate that this method can be used for both homo- and hetero-phase interfaces and takes into account the actual distribution of solute atoms across an interface as determined by APT. It is applied to the case of the semiconducting system PbTe-PbS 12 mol.%-Na 1 mol.%, where Na segregation at the PbS/PbTe interface is anticipated to reduce the interfacial free energy of the {100} facets. We also consider the case of the nickel-based Alloy 600, where B and Si segregation are suspected to impede inter-granular stress corrosion cracking (IGSCC) at homo- (GB) and hetero-phase metal carbide (M7C3) interfaces. The concentration profiles associated with internal interfaces are measured by APT using an ultraviolet (wavelength = 355 nm) laser to dissect nanotips on an atom-by-atom and atomic plane-by-plane basis.
We describe a simple method to determine, from ab initio calculations, the complete orientation-dependence of interfacial free energies in solid-state crystalline systems. We illustrate the method with an application to precipitates in the Al-Ti allo
Precipitate strengthening of light metals underpins a large segment of industry.Yet, quantitative understanding of physics involved in precipitate formation is often lacking, especially, about interfacial contribution to the energetics of precipitate
Boundary integral numerical methods are among the most accurate methods for interfacial Stokes flow, and are widely applied. They have the advantage that only the boundary of the domain must be discretized, which reduces the number of discretization
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-
We propose a simple Monte Carlo method to calculate the interfacial free energy between the substrate and the material. Using this method we investigate the interfacial free energys of the hard sphere fluid and solid phases near a smooth hard wall. A