ترغب بنشر مسار تعليمي؟ اضغط هنا

Disentangling X-ray dichroism and birefringence via high-purity polarimetry

96   0   0.0 ( 0 )
 نشر من قبل Annika Tamara Schmitt
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-brilliance synchrotron radiation sources have opened new avenues for X-ray polarization analysis that go far beyond conventional polarimetry in the optical domain. With linear X-ray polarizers in a crossed setting polarization extinction ratios down to 10$^{-10}$ can be achieved. This renders the method sensitive to probe tiniest optical anisotropies that would occur, for example, in strong-field QED due to vacuum birefringence and dichroism. Here we show that high-purity polarimetry can be employed to reveal electronic anisotropies in condensed matter systems with utmost sensitivity and spectral resolution. Taking CuO and La$_2$CuO$_4$ as benchmark systems, we present a full characterization of the polarization changes across the Cu K-absorption edge and their separation into dichroic and birefringent contributions. At diffraction-limited synchrotron radiation sources and X-ray lasers, where polarization extinction ratios of 10$^{-12}$ can be achieved, our method has the potential to assess birefringence and dichroism of the quantum vacuum in extreme electromagnetic fields.



قيم البحث

اقرأ أيضاً

Linear polarization analysis of hard x-rays is employed to probe electronic anisotropies in metal-containing complexes with very high selectivity. We use the pronounced linear dichroism of nuclear resonant x-ray scattering to determine electric field gradients in an iron(II) containing compound as they evolve during a temperature-dependent high-spin/low-spin phase transition. This method constitutes a novel approach to analyze changes in the electronic structure of metal-containing molecules as function of external parameters or stimuli. The polarization selectivity of the technique allows us to monitor defect concentrations of electronic valence states across phase transitions. This opens new avenues to trace electronic changes and their precursors that are connected to structural and electronic dynamics in the class of metal compounds ranging from simple molecular solids to biological molecules.
We present the current status and outlook of the optical characterization of the polarimeter at the Bir{e}fringence Magnetique du Vide (BMV) experiment. BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the presence of extern al electromagnetic fields. The main challenge faced in this fundamental test is the measurement of polarization ellipticity on the order of ${10^{-15}}$ induced in linearly polarized laser field per pass through a magnetic field having an amplitude and length ${B^{2}L=100,mathrm{T}^{2}mathrm{m}}$. This challenge is addressed by understanding the noise sources in precision cavity-enhanced polarimetry. In this paper we discuss the first investigation of dynamical birefringence in the signal-enhancing cavity as a result of cavity mirror motion.
We study the perspectives of measuring the phenomenon of vacuum birefringence predicted by quantum electrodynamics using an x-ray free-electron laser (XFEL) alone. We devise an experimental scheme allowing the XFEL beam to collide with itself under a finite angle, and thus act as both pump and probe field for the effect. The signature of vacuum birefringence is encoded in polarization-flipped signal photons to be detected with high-purity x-ray polarimetry. Our findings for idealized scenarios underline that the discovery potential of solely XFEL-based setups can be comparable to those involving optical high-intensity lasers. For currently achievable scenarios, we identify several key details of the x-ray optical ingredients that exert a strong influence on the magnitude of the desired signatures.
Following the recent developement of Fourier ptychographic microscopy (FPM) in the visible range by Zheng et al. (2013), we propose an adaptation for hard x-rays. FPM employs ptychographic reconstruction to merge a series of low-resolution, wide fiel d of view images into a high-resolution image. In the x-ray range this opens the possibility to overcome the limited numerical aperture of existing x-ray lenses. Furthermore, digital wave front correction (DWC) may be used to charaterize and correct lens imperfections. Given the diffraction limit achievable with x-ray lenses (below 100 nm), x-ray Fourier ptychographic microscopy (XFPM) should be able to reach resolutions in the 10 nm range.
We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-r ay irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا