ﻻ يوجد ملخص باللغة العربية
Recent advances in deep representation learning on Riemannian manifolds extend classical deep learning operations to better capture the geometry of the manifold. One possible extension is the Frechet mean, the generalization of the Euclidean mean; however, it has been difficult to apply because it lacks a closed form with an easily computable derivative. In this paper, we show how to differentiate through the Frechet mean for arbitrary Riemannian manifolds. Then, focusing on hyperbolic space, we derive explicit gradient expressions and a fast, accurate, and hyperparameter-free Frechet mean solver. This fully integrates the Frechet mean into the hyperbolic neural network pipeline. To demonstrate this integration, we present two case studies. First, we apply our Frechet mean to the existing Hyperbolic Graph Convolutional Network, replacing its projected aggregation to obtain state-of-the-art results on datasets with high hyperbolicity. Second, to demonstrate the Frechet means capacity to generalize Euclidean neural network operations, we develop a hyperbolic batch normalization method that gives an improvement parallel to the one observed in the Euclidean setting.
We consider the problem of efficiently computing the derivative of the solution map of a convex cone program, when it exists. We do this by implicitly differentiating the residual map for its homogeneous self-dual embedding, and solving the linear sy
Counterfactual inference has become a ubiquitous tool in online advertisement, recommendation systems, medical diagnosis, and econometrics. Accurate modeling of outcome distributions associated with different interventions -- known as counterfactual
Sampling from distributions to find the one with the largest mean arises in a broad range of applications, and it can be mathematically modeled as a multi-armed bandit problem in which each distribution is associated with an arm. This paper studies t
We show how to efficiently compute the derivative (when it exists) of the solution map of log-log convex programs (LLCPs). These are nonconvex, nonsmooth optimization problems with positive variables that become convex when the variables, objective f
Data in non-Euclidean spaces are commonly encountered in many fields of Science and Engineering. For instance, in Robotics, attitude sensors capture orientation which is an element of a Lie group. In the recent past, several researchers have reported