ترغب بنشر مسار تعليمي؟ اضغط هنا

Control Efficacy on COVID-19

61   0   0.0 ( 0 )
 نشر من قبل Tao Zhou
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We proposed a Monte-Carlo method to estimate temporal reproduction number without complete information about symptom onsets of all cases. Province-level analysis demonstrated the huge success of Chinese control measures on COVID-19, that is, provinces reproduction numbers quickly decrease to <1 by just one week after taking actions.



قيم البحث

اقرأ أيضاً

We revisit well-established concepts of epidemiology, the Ising-model, and percolation theory. Also, we employ a spin $S$ = 1/2 Ising-like model and a (logistic) Fermi-Dirac-like function to describe the spread of Covid-19. Our analysis reinforces we ll-established literature results, namely: emph{i}) that the epidemic curves can be described by a Gaussian-type function; emph{ii}) that the temporal evolution of the accumulative number of infections and fatalities follow a logistic function, which has some resemblance with a distorted Fermi-Dirac-like function; emph{iii}) the key role played by the quarantine to block the spread of Covid-19 in terms of an emph{interacting} parameter, which emulates the contact between infected and non-infected people. Furthermore, in the frame of elementary percolation theory, we show that: emph{i}) the percolation probability can be associated with the probability of a person being infected with Covid-19; emph{ii}) the concepts of blocked and non-blocked connections can be associated, respectively, with a person respecting or not the social distancing, impacting thus in the probability of an infected person to infect other people. Increasing the number of infected people leads to an increase in the number of net connections, giving rise thus to a higher probability of new infections (percolation). We demonstrate the importance of social distancing in preventing the spread of Covid-19 in a pedagogical way. Given the impossibility of making a precise forecast of the disease spread, we highlight the importance of taking into account additional factors, such as climate changes and urbanization, in the mathematical description of epidemics. Yet, we make a connection between the standard mathematical models employed in epidemics and well-established concepts in condensed matter Physics, such as the Fermi gas and the Landau Fermi-liquid picture.
We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable ti me delays without changing its model topology. Bayesian estimation of model parameters is carried out using Markov Chain Monte Carlo (MCMC) methods. This framework allows us to treat all available input information, including both the previously published parameters of the epidemic and available local data, in a uniform manner. To accurately model deaths as well as demand on the healthcare system, we calibrate our predictions to total and in-hospital deaths as well as hospital and ICU bed occupancy by COVID-19 patients. We apply this model not only to the state as a whole but also its sub-regions in order to account for the wide disparities in population size and density. Without prior information on non-pharmaceutical interventions (NPIs), the model independently reproduces a mitigation trend closely matching mobility data reported by Google and Unacast. Forward predictions of the model provide robust estimates of the peak position and severity and also enable forecasting the regional-dependent results of releasing Stay-at-Home orders. The resulting highly constrained narrative of the epidemic is able to provide estimates of its unseen progression and inform scenarios for sustainable monitoring and control of the epidemic.
145 - Carlo R. Contaldi 2020
Timely estimation of the current value for COVID-19 reproduction factor $R$ has become a key aim of efforts to inform management strategies. $R$ is an important metric used by policy-makers in setting mitigation levels and is also important for accur ate modelling of epidemic progression. This brief paper introduces a method for estimating $R$ from biased case testing data. Using testing data, rather than hospitalisation or death data, provides a much earlier metric along the symptomatic progression scale. This can be hugely important when fighting the exponential nature of an epidemic. We develop a practical estimator and apply it to Scottish case testing data to infer a current (20 May 2020) $R$ value of $0.74$ with $95%$ confidence interval $[0.48 - 0.86]$.
The nation-wide lockdown starting 25 March 2020, aimed at suppressing the spread of the COVID-19 disease, was extended until 31 May 2020 in three subsequent orders by the Government of India. The extended lockdown has had significant social and econo mic consequences and `lockdown fatigue has likely set in. Phased reopening began from 01 June 2020 onwards. Mumbai, one of the most crowded cities in the world, has witnessed both the largest number of cases and deaths among all the cities in India (41986 positive cases and 1368 deaths as of 02 June 2020). Many tough decisions are going to be made on re-opening in the next few days. In an earlier IISc-TIFR Report, we presented an agent-based city-scale simulator(ABCS) to model the progression and spread of the infection in large metropolises like Mumbai and Bengaluru. As discussed in IISc-TIFR Report 1, ABCS is a useful tool to model interactions of city residents at an individual level and to capture the impact of non-pharmaceutical interventions on the infection spread. In this report we focus on Mumbai. Using our simulator, we consider some plausible scenarios for phased emergence of Mumbai from the lockdown, 01 June 2020 onwards. These include phased and gradual opening of the industry, partial opening of public transportation (modelling of infection spread in suburban trains), impact of containment zones on controlling infections, and the role of compliance with respect to various intervention measures including use of masks, case isolation, home quarantine, etc. The main takeaway of our simulation results is that a phased opening of workplaces, say at a conservative attendance level of 20 to 33%, is a good way to restart economic activity while ensuring that the citys medical care capacity remains adequate to handle the possible rise in the number of COVID-19 patients in June and July.
76 - Luca DellAnna 2020
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solv ed exactly, even in the presence of a time-dependent infection rate. This delay model has a higher degree of accuracy than that of the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential equations. We apply this model to describe the outbreak of the new infectious disease, Covid-19, in Italy, taking into account the containment measures implemented by the government in order to mitigate the spreading of the virus and the social costs for the population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا