ﻻ يوجد ملخص باللغة العربية
Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit, but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS.
The Venusian atmosphere is in a state of superrotation where prevailing westward winds move much faster than the planets rotation. Venus is covered with thick clouds that extend from about 45 to 70 km altitude, but thermal radiation emitted from the
This work analyzes the X-ray, EUV and UV emission apparently coming from the Earth-facing (dark) side of Venus as observed with Hinode/XRT and SDO/AIA during a transit across the solar disk occurred in 2012. We have measured significant X-Ray, EUV an
We report Venus image observations around the two maximum elongations of the planet at June and October 2015. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA Akatsuki mission
Longwave Infrared Camera (LIR) onboard Akatsuki first revealed the global structure of the thermal tides in the upper cloud layer of Venus. The data were acquired over three Venusian years, and the analysis was done over the areas from the equator to
The so-called unknown absorber in the clouds of Venus is an important absorber of solar energy, but its vertical distribution remains poorly quantified. We analyze the 283 and 365-nm phase curves of the disk-integrated albedo measured by Akatsuki. Ba