ترغب بنشر مسار تعليمي؟ اضغط هنا

Be X-ray binaries in the SMC as indicators of mass transfer efficiency

104   0   0.0 ( 0 )
 نشر من قبل Ilya Mandel
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Be X-ray binaries (BeXRBs) consist of rapidly rotating Be stars with neutron star companions accreting from the circumstellar emission disk. We compare the observed population of BeXRBs in the Small Magellanic Cloud with simulated populations of BeXRB-like systems produced with the COMPAS population synthesis code. We focus on the apparently higher minimal mass of Be stars in BeXRBs than in the Be population at large. Assuming that BeXRBs experienced only dynamically stable mass transfer, their mass distribution suggests that at least 30% of the mass donated by the progenitor of the neutron star is typically accreted by the B-star companion. We expect these results to affect predictions for the population of double compact object mergers. A convolution of the simulated BeXRB population with the star formation history of the Small Magellanic Cloud shows that the excess of BeXRBs is most likely explained by this galaxys burst of star formation around 20--40 Myr ago.

قيم البحث

اقرأ أيضاً

We present an optical and X-ray study of four Be/X-ray binaries located in the Small Magellanic Cloud (SMC). OGLE I-band data of up to 11 years of semi-continuous monitoring has been analysed for SMC X-2, SXP172 and SXP202B, providing both a measurem ent of the orbital period (Porb = 18.62, 68.90, and 229.9 days for the pulsars respectively) and a detailed optical orbital profile for each pulsar. For SXP172 this has allowed a direct comparison of the optical and X-ray emission seen through regular RXTE monitoring, revealing that the X-ray outbursts precede the optical by around 7 days. Recent X-ray studies by XMM-Newton have identified a new source in the vicinity of SXP15.3 raising doubt on the identification of the optical counterpart to this X-ray pulsar. Here we present a discussion of the observations that led to the proposal of the original counterpart and a detailed optical analysis of the counterpart to the new X-ray source, identifying a 21.7 d periodicity in the OGLE I-band data. The optical characteristics of this star are consistent with that of a SMC Be/X-ray binary. However, this star was rejected as the counterpart to SXP15.3 in previous studies due to the lack of H{alpha} emission.
High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the tra nsient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some detail whereas the optical and infrared properties are briefly discussed.
233 - Wynn C. G. Ho 2020
The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where t he neutron star is in its late propeller, accretor, or nearly spin equilibrium phase. Here we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries early in their life. We show that a young neutron star is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ~4000 yr old high-mass X-ray binary XMMU J051342.6-672412 and find that the systems neutron star, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > (a few)x10^13 G, which is comparable to the magnetic field of many older high-mass X-ray binaries and is much higher than the spin equilibrium inferred value of (a few)x10^11 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic neutron star or a small amount of accretion that can occur in the propeller phase.
Be/X-ray binary systems exhibit both periodic (Type I) X-ray outbursts and giant (Type II) outbursts, whose origin has remained elusive. We suggest that Type II X-ray outbursts occur when a highly misaligned decretion disk around the Be star becomes eccentric, allowing the compact object companion to capture a large amount of material at periastron. Using 3D smoothed particle hydrodynamics simulations we model the long term evolution of a representative Be/X-ray binary system. We find that periodic (Type I) X-ray outbursts occur when the neutron star is close to periastron for all disk inclinations. Type II outbursts occur for large misalignment angles and are associated with eccentricity growth that occurs on a timescale of about 10 orbital periods. Mass capture from the eccentric decretion disk results in an accretion disk around the neutron star whose estimated viscous time is long enough to explain the extended duration of Type II outbursts. Previous studies suggested that the outbursts are caused by a warped disk but our results suggest that this is not sufficient, the disk must be both highly misaligned and eccentric to initiate a Type II accretion event.
We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا