ترغب بنشر مسار تعليمي؟ اضغط هنا

Herschel observations of INTEGRAL supergiant High Mass X-ray Binaries

169   0   0.0 ( 0 )
 نشر من قبل Sylvain Chaty Prof.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present preliminary results on Herschel/PACS mid/far-infrared photometric observations of INTEGRAL supergiant High Mass X-ray Binaries (HMXBs), with the aim of detecting the presence and characterizing the nature of absorbing material (dust and/or cold gas), either enshrouding the whole binary systems, or surrounding the sources within their close environment. These unique observations allow us to better characterize the nature of these HMXBs, to constrain the link with their environment (impact and feedback), and finally to get a better understanding of the formation and evolution of such rare and short-living supergiant HMXBs in our Galaxy.



قيم البحث

اقرأ أيضاً

The INTEGRAL archive developed at INAF-IASF Milano with the available public observations from late 2002 to 2016 is investigated to extract the X-ray properties of 58 High Mass X-ray Binaries (HMXBs). This sample consists of sources hosting either a Be star (Be/XRBs) or an early-type supergiant companion (SgHMXBs), including the Supergiant Fast X-ray Transients (SFXTs). INTEGRAL light curves (sampled at 2 ks) are used to build their hard X-ray luminosity distributions, returning the source duty cycles, the range of variability of the X-ray luminosity and the time spent in each luminosity state. The phenomenology observed with INTEGRAL, together with the source variability at soft X-rays taken from the literature, allows us to obtain a quantitative overview of the main sub-classes of massive binaries in accretion (Be/XRBs, SgHMXBs and SFXTs). Although some criteria can be derived to distinguish them, some SgHMXBs exist with intermediate properties, bridging together persistent SgHMXBs and SFXTs.
We analyzed in a systematic way the public INTEGRAL observations spanning from December 2002 to September 2016, to investigate the hard X-ray properties of about 60 High Mass X-ray Binaries (HMXBs). We considered both persistent and transient sources , hosting either a Be star (Be/XRBs) or a blue supergiant companion (SgHMXBs, including Supergiant Fast X-ray Transients, SFXTs), a neutron star or a black hole. INTEGRAL X-ray light curves (18-50 keV), sampled at a bin time of about 2 ks, were extracted for all HMXBs to derive the cumulative distribution of their hard X-ray luminosity, their duty cycle, the range of variability of their hard X-ray luminosity. This allowed us to obtain an overall and quantitative characterization of the long-term hard X-ray activity of the HMXBs in our sample. Putting the phenomenology observed with INTEGRAL into context with other known source properties (e.g. orbital parameters, pulsar spin periods) together with observational constraints coming from softer X-rays (1-10 keV), enabled the investigation of the way the different HMXB sub-classes behave (and sometimes overlap). For given source properties, the different sub-classes of massive binaries seem to cluster in a suggestive way. However, for what concerns supergiant systems (SgHMXBs versus SFXTs), several sources with intermediate properties exist, suggesting a smooth transition between the two sub-classes.
High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the tra nsient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some detail whereas the optical and infrared properties are briefly discussed.
High Mass X-ray Binaries (HMXB) have been revealed by a wealth of multi-wavelength observations, from X-ray to optical and infrared domain. After describing the 3 different kinds of HMXB, we focus on 3 HMXB hosting supergiant stars: IGR J16320-4751, IGR J16465-4507 and IGR J16318-4848, respectively called The Good, The Bad and The Ugly. We review in these proceedings what the observations of these sources have brought to light concerning our knowledge of HMXB, and what part still remains in the dark side. Many questions are still pending, related to accretion processes, stellar wind properties in these massive and active stars, and the overall evolution due to transfer of mass and angular momentum between the companion star and the compact object. Future observations should be able to answer these questions, which constitute the dark side of HMXB.
Since it started observing the sky, the INTEGRAL satellite has discovered new categories of high mass X-ray binaries (HMXB) in our Galaxy. These observations raise important questions on the formation and evolution of these rare and short-lived objec ts. We present here new infrared observations from which to reveal or constrain the nature of 15 INTEGRAL sources, which allow us to update and discuss the Galactic HMXB population statistics. After previous photometric and spectroscopic observing campaigns in the optical and near-infrared, new photometry and spectroscopy was performed in the near-infrared with the SofI instrument on the ESO/NTT telescope in 2008 and 2010 on a sample of INTEGRAL sources. These observations, and specifically the detection of certain features in the spectra, allow the identification of these high-energy objects by comparison with published nIR spectral atlases of O and B stars. We present photometric data of nine sources (IGR J10101-5654, IGR J11187-5438, IGR J11435-6109, IGR J14331-6112, IGR J16328-4726, IGR J17200-3116, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129) and spectroscopic observations of 13 sources (IGR J10101-5654, IGR J11435-6109, IGR J13020-6359, IGR J14331-6112, IGR J14488-5942, IGR J16195-4945, IGR J16318-4848, IGR J16320-4751, IGR J16328-4726, IGR J16418-4532, IGR J17354-3255, IGR J17404-3655, and IGR J17586-2129). Our spectroscopic measurements indicate that: five of these objects are Oe/Be high-mass X-ray binaries (BeHMXB), six are supergiant high-mass X-ray binaries (sgHMXB), and two are sgB[e]. From a statistical point of view, we estimate the proportion of confirmed sgHMXB to be 42% and that of the confirmed BeHMXB to be 49%. The remaining 9% are peculiar HMXB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا