ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact solution of electronic transport in semiconductors dominated by scattering on polaronic impurities

298   0   0.0 ( 0 )
 نشر من قبل Juraj Krsnik
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scattering of electrons on impurities with internal degrees of freedom is bound to produce the signatures of the scatterers own dynamics and results in nontrivial electronic transport properties. Previous studies of polaronic impurities in low-dimensional structures, like molecular junctions and one-dimensional nanowire models, have shown that perturbative treatments cannot account for a complex energy dependence of the scattering cross section in such systems. Here we derive the exact solution of polaronic impurities shaping the electronic transport in bulk (3D) systems. In the model with a short-ranged electron-phonon interaction, we solve for and sum over all elastic and inelastic partial cross sections, abundant in resonant features. The temperature dependence of the charge mobility shows the power-law dependence, $mu(T)propto T^{- u}$, with $ u$ being highly sensitive to impurity parameters. The latter may explain nonuniversal power-law exponents observed experimentally, e.g. in high-quality organic molecular semiconductors.


قيم البحث

اقرأ أيضاً

Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive tool for the study of subtle charge, orbital, and spin superlattice orders driven by the valence electrons, which therefore escape detection in conventional x-ray diffraction (XRD). Although the power of REXS has been demonstrated by numerous studies of complex oxides performed in the soft x-ray regime, the cross section and photon wavelength of the material-specific elemental absorption edges ultimately set the limit to the smallest superlattice amplitude and periodicity one can probe. Here we show -- with simulations and REXS on Mn-substituted Sr$_3$Ru$_2$O$_7$ -- that these limitations can be overcome by performing resonant scattering experiments at the absorption edge of a suitably-chosen, dilute impurity. This establishes that -- in analogy with impurity-based methods used in electron-spin-resonance, nuclear-magnetic resonance, and Mossbauer spectroscopy -- randomly distributed impurities can serve as a non-invasive, but now momentum-dependent probe, greatly extending the applicability of resonant x-ray scattering techniques.
Twisted bilayer graphene (tBLG) has recently emerged as a platform for hosting correlated phenomena, owing to the exceptionally flat band dispersion that results near interlayer twist angle $thetaapprox1.1^circ$. At low temperature a variety of phase s are observed that appear to be driven by electron interactions including insulating states, superconductivity, and magnetism. Electrical transport in the high temperature regime has received less attention but is also highly anomalous, exhibiting gigantic resistance enhancement and non-monotonic temperature dependence. Here we report on the evolution of the scattering mechanisms in tBLG over a wide range of temperature and for twist angle varying from 0.75$^circ$ - 2$^circ$. We find that the resistivity, $rho$, exhibits three distinct phenomenological regimes as a function of temperature, $T$. At low $T$ the response is dominated by correlation and disorder physics; at high $T$ by thermal activation to higher moire subbands; and at intermediate temperatures $rho$ varies linearly with $T$. The $T$-linear response is much larger than in monolayer graphenefor all measured twist angles, and increases by more than three orders of magnitude for $theta$ near the flat-band condition. Our results point to the dominant role of electron-phonon scattering in twisted layer systems, with possible implications for the origin of the observed superconductivity.
Constructing an effective field theory in terms of doped magnetic impurities (described by an O(3) vector model with a random mass term), itinerant electrons of spin-orbit coupled semiconductors (given by a Dirac theory with a relatively large mass t erm), and effective interactions between doped magnetic ions and itinerant electrons (assumed by an effective Zeeman coupling term), we perform the perturbative renormalization group analysis in the one-loop level based on the dimensional regularization technique. As a result, we find that the mass renormalization in dynamics of itinerant electrons acquires negative feedback effects due to quantum fluctuations involved with the Zeeman coupling term, in contrast with that of the conventional problem of quantum electrodynamics, where such interaction effects enhance the fermion mass more rapidly. Recalling that the applied magnetic field decreases the band gap in the presence of spin-orbit coupling, this renormalization group analysis shows that the external magnetic field overcomes the renormalized band gap, allowed by doped magnetic impurities even without ferromagnetic ordering. In other words, the Weyl metal physics can be controlled by doping magnetic impurities into spin-orbit coupled semiconductors, even if the external magnetic field alone cannot realize the Weyl metal phase due to relatively large band gaps of semiconductors. Furthermore, we emphasize that quasiparticles do not exist in this emergent disordered Weyl metal phase due to correlations with strong magnetic fluctuations. This non-Fermi liquid type Weyl metal state may be regarded to be a novel metallic phase in the respect that a topologically nontrivial band structure appears in the vicinity of quantum criticality.
The thermal conductivity $kappa$ of the Kondo insulator SmB$_6$ was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term $kappa _0/T$ at $T to 0$ is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fermionic heat carriers. In contrast to some prior data, we observe a large enhancement of $kappa(T)$ with increasing field. The effect of field is anisotropic, depending on the relative orientation of field and heat current (parallel or perpendicular), and with respect to the cubic crystal structure. We interpret our data in terms of heat transport predominantly by phonons, which are scattered by magnetic impurities.
The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of transition metal (TM=Mn, Co) impurities in p-type ZnO. Based on the total energy considerations, we find a stable localis ed TM$^{2+}$ configuration for a TM impurity in ZnO if no additional hole donors are present. Our calculations indicate that the (+/0) donor level is situated in the band gap, as a consequence of which the TM$^{3+}$ becomes more favourable in p-type ZnO, where the Fermi level is positioned at the top of the valence band. When co-doping with N, it emerges that the carrier-mediated ferromagnetism can be realized in the scenario where the N concentration exceeds the TM impurity concentration. If TM and N concentrations are equal, the shallow acceptor levels introduced by N are fully compensated by delocalised TM d-electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا