ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability and energetics of 2D surface crystals in liquid AuSi thin films and nanoscale droplets

111   0   0.0 ( 0 )
 نشر من قبل Moneesh Upmanyu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Segregation at surfaces of metal-covalent binary liquids is often non-classical and in extreme cases such as AuSi, the surface crystallizes above the melting point. In this study, we employ atomic-scale computational frameworks to study the surface crystallization of AuSi films and droplets as a function of composition, temperature and size. For temperatures in the range $T_s^ast=765-780$K above the melting point $(T_s^astapprox1.3,T_m)$, both thin film and droplet surfaces undergo a first order transition, from a 2D Au$_2$Si crystalline phase to a laterally disordered yet stratified layer. The thin film surfaces exhibit an effective surface tension that increases with temperature and decreases with Si concentration. On the other hand, for droplets in the size range $10-30$ nm, the bulk Laplace pressure alters the surface segregation as it occurs with respect to a strained bulk. Above $T_s^ast$ the size effect on the surface tension is small, while for $T<T_s^ast$ the surface layer is strained and composed of 2D crystallites separated by extended grain boundary scars that lead to large fluctuations in its energetics. As a specific application, all-atom simulations of AuSi droplets on Si(111) substrate subject to Si surface flux show that the supersaturation dependent surface tension destabilizes the contact line via formation of a precursor wetting film on the solid-vapor interface, and has ramifications for size selection during VLS-based routes for nanowire growth. Our study sheds light on the interplay between stability and energetics of surfaces in these unique class of binary alloys and offers pathways for exploiting their surface structure for varied applications such as catalytic nanocrystal growth, dealloying, and polymer crystallization.



قيم البحث

اقرأ أيضاً

X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au_{82}Si_{18}, at temperatures above the alloys melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystallin e monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.
In ideal topological insulator (TI) films the bulk state, which is supposed to be insulating, should not provide any electric coupling between the two metallic surfaces. However, transport studies on existing TI films show that the topological states on opposite surfaces are electrically tied to each other at thicknesses far greater than the direct coupling limit where the surface wavefunctions overlap. Here, we show that as the conducting bulk channels are suppressed, the parasitic coupling effect diminishes and the decoupled surface channels emerge as expected for ideal TIs. In Bi2Se3 thin films with fully suppressed bulk states, the two surfaces, which are directly coupled below ~10 QL, become gradually isolated with increasing thickness and are completely decoupled beyond ~20 QL. On such a platform, it is now feasible to implement transport devices whose functionality relies on accessing the individual surface layers without any deleterious coupling effects.
Determining the 3-dimensional crystallography of a material with sub-nanometre resolution is essential to understanding strain effects in epitaxial thin films. A new scanning transmission electron microscopy imaging technique is demonstrated that vis ualises the presence and strength of atomic movements leading to a period doubling of the unit cell along the beam direction, using the intensity in an extra Laue zone ring in the back focal plane recorded using a pixelated detector method. This method is used together with conventional atomic resolution imaging in the plane perpendicular to the beam direction to gain information about the 3D crystal structure in an epitaxial thin film of LaFeO3 sandwiched between a substrate of (111) SrTiO3 and a top layer of La0.7Sr0.3MnO3. It is found that a hitherto unreported structure of LaFeO3 is formed under the unusual combination of compressive strain and (111) growth, which is triclinic with a periodicity doubling from primitive perovskite along one of the three <110> directions lying in the growth plane. This results from a combination of La-site modulation along the beam direction, and modulation of oxygen positions resulting from octahedral tilting. This transition to the period-doubled cell is suppressed near both the substrate and near the La0.7Sr0.3MnO3 top layer due to the clamping of the octahedral tilting by the absence of tilting in the substrate and due to an incompatible tilt pattern being present in the La0.7Sr0.3MnO3 layer. This work shows a rapid and easy way of scanning for such transitions in thin films or other systems where disorder-order transitions or domain structures may be present and does not require the use of atomic resolution imaging, and could be done on any scanning TEM instrument equipped with a suitable camera.
There has been a lot of excitement around the observation of superconductivity in twisted bilayer graphene, associated to flat bands close to the Fermi level. Such correlated electronic states also occur in multilayer rhombohedral stacked graphene (R G), which has been receiving increasing attention in the last years. In both natural and artificial samples however, multilayer stacked Bernal graphene (BG) occurs more frequently, making it desirable to determine what is their relative stability and under which conditions RG might be favored. Here, we study the energetics of BG and RG in bulk and also multilayer stacked graphene using first-principles calculations. It is shown that the electronic temperature, not accounted for in previous studies, plays a crucial role in determining which phase is preferred. We also show that the low energy states at room temperature consist of BG, RG and mixed BG-RG systems with a particular type of interface. Energies of all stacking sequences (SSs) are calculated for N = 12 layers, and an Ising model is used to fit them, which can be used for larger N as well. In this way, the ordering of low energy SSs can be determined and analyzed in terms of a few parameters. Our work clarifies inconsistent results in the literature, and sets the basis to studying the effect of external factors on the stability of multilayer graphene systems in first principles calculations.
We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd3As2, with a metallic ferromagnet, Ni0.80Fe0.20 (permalloy). The spin-charge interconversion is dete cted by both spin torque ferromagnetic resonance and ferromagnetic resonance driven spin pumping. Analysis of the symmetric and anti-symmetric components of the mixing voltage in spin torque ferromagnetic resonance and the frequency and power dependence of the spin pumping signal show that the behavior of these processes is consistent with previously reported spin-charge interconversion mechanisms in heavy metals, topological insulators, and Weyl semimetals. We find that the efficiency of spin-charge interconversion in Cd3As2/permalloy bilayers can be comparable to that in heavy metals. We discuss the underlying mechanisms by comparing our results with first principles calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا