ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface Crystallization in a Liquid AuSi Alloy

73   0   0.0 ( 0 )
 نشر من قبل Oleg Shpyrko
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au_{82}Si_{18}, at temperatures above the alloys melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.

قيم البحث

اقرأ أيضاً

The enhancement of mobility at the surface of an amorphous alloy is studied using a combination of molecular dynamic simulations and normal mode analysis of the non-uniform distribution of Debye-Waller factors. The increased mobility at the surface i s found to be associated with the appearance of Arrhenius temperature dependence. We show that the transverse Debye-Waller factor exhibits a peak at the surface. Over the accessible temperature range, we find that the bulk and surface diffusion coefficients obey the same empirical relationship with the respective Debye-Waller factors. Extrapolating this relationship to lower T, we argue that the observed decrease in the constraint at the surface is sufficient to account for the experimentally observed surface enhancement of mobility.
Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.
Freezing is a fundamental physical phenomenon that has been studied over many decades; yet the role played by surfaces in determining nucleation has remained elusive. Here we report direct computational evidence of surface induced nucleation in super cooled systems with a negative slope of their melting line (dP/dT < 0). This unexpected result is related to the density decrease occurring upon crystallization, and to surface tension facilitating the initial nucleus formation. Our findings support the hypothesis of surface induced crystallization of ice in the atmosphere, and provide insight, at the atomistic level, into nucleation mechanisms of widely used semiconductors.
Resonant x-ray reflectivity of the surface of the liquid phase of the Bi$_{43}$Sn$_{57}$ eutectic alloy reveals atomic-scale demixing extending over three near-surface atomic layers. Due to the absence of underlying atomic lattice which typically def ines adsorption in crystalline alloys, studies of adsorption in liquid alloys provide unique insight on interatomic interactions at the surface. The observed composition modulation could be accounted for quantitatively by the Defay-Prigogine and Strohl-King multilayer extensions of the single-layer Gibbs model, revealing a near-surface domination of the attractive Bi-Sn interaction over the entropy.
We simulate a strongly size-disperse hard-sphere fluid confined between two parallel, hard walls. We find that confinement induces crystallization into n-layered hexagonal lattices and a novel honeycomb-shaped structure, facilitated by fractionation. The onset of freezing prevents the formation of a stable glass phase and occurs at much smaller packing fraction than in bulk. Varying the wall separation triggers solid-to-solid transitions and a systematic change of the size-distribution of crystalline particles, which we rationalize using a semi-quantitative theory. We show that the crystallization can be exploited in a wedge geometry to demix particles of different sizes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا