ترغب بنشر مسار تعليمي؟ اضغط هنا

Genetic algorithms with permutation-based representation for computing the distance of linear codes

52   0   0.0 ( 0 )
 نشر من قبل F. J. Lobillo
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding the minimum distance of linear codes is an NP-hard problem. Traditionally, this computation has been addressed by means of the design of algorithms that find, by a clever exhaustive search, a linear combination of some generating matrix rows that provides a codeword with minimum weight. Therefore, as the dimension of the code or the size of the underlying finite field increase, so it does exponentially the run time. In this work, we prove that, given a generating matrix, there exists a column permutation which leads to a reduced row echelon form containing a row whose weight is the code distance. This result enables the use of permutations as representation scheme, in contrast to the usual discrete representation, which makes the search of the optimum polynomial time dependent from the base field. In particular, we have implemented genetic and CHC algorithms using this representation as a proof of concept. Experimental results have been carried out employing codes over fields with two and eight elements, which suggests that evolutionary algorithms with our proposed permutation encoding are competitive with regard to existing methods in the literature. As a by-product, we have found and amended some inaccuracies in the MAGMA Computational Algebra System concerning the stored distances of some linear codes.



قيم البحث

اقرأ أيضاً

The conventional theory of linear network coding (LNC) is only over acyclic networks. Convolutional network coding (CNC) applies to all networks. It is also a form of LNC, but the linearity is w.r.t. the ring of rational power series rather than the field of data symbols. CNC has been generalized to LNC w.r.t. any discrete valuation ring (DVR) in order for flexibility in applications. For a causal DVR-based code, all possible source-generated messages form a free module, while incoming coding vectors to a receiver span the emph{received submodule}. An existing emph{time-invariant decoding} algorithm is at a delay equal to the largest valuation among all invariant factors of the received submodule. This intrinsic algebraic attribute is herein proved to be the optimal decoding delay. Meanwhile, emph{time-variant decoding} is formulated. The meaning of time-invariant decoding delay gets a new interpretation through being a special case of the time-variant counterpart. The optimal delay turns out to be the same for time-variant decoding, but the decoding algorithm is more flexible in terms of decodability check and decoding matrix design. All results apply, in particular, to CNC.
This paper presents lossless prefix codes optimized with respect to a pay-off criterion consisting of a convex combination of maximum codeword length and average codeword length. The optimal codeword lengths obtained are based on a new coding algorit hm which transforms the initial source probability vector into a new probability vector according to a merging rule. The coding algorithm is equivalent to a partition of the source alphabet into disjoint sets on which a new transformed probability vector is defined as a function of the initial source probability vector and a scalar parameter. The pay-off criterion considered encompasses a trade-off between maximum and average codeword length; it is related to a pay-off criterion consisting of a convex combination of average codeword length and average of an exponential function of the codeword length, and to an average codeword length pay-off criterion subject to a limited length constraint. A special case of the first related pay-off is connected to coding problems involving source probability uncertainty and codeword overflow probability, while the second related pay-off compliments limited length Huffman coding algorithms.
We prove that, for the binary erasure channel (BEC), the polar-coding paradigm gives rise to codes that not only approach the Shannon limit but do so under the best possible scaling of their block length as a~function of the gap to capacity. This res ult exhibits the first known family of binary codes that attain both optimal scaling and quasi-linear complexity of encoding and decoding. Our proof is based on the construction and analysis of binary polar codes with large kernels. When communicating reliably at rates within $varepsilon > 0$ of capacity, the code length $n$ often scales as $O(1/varepsilon^{mu})$, where the constant $mu$ is called the scaling exponent. It is known that the optimal scaling exponent is $mu=2$, and it is achieved by random linear codes. The scaling exponent of conventional polar codes (based on the $2times 2$ kernel) on the BEC is $mu=3.63$. This falls far short of the optimal scaling guaranteed by random codes. Our main contribution is a rigorous proof of the following result: for the BEC, there exist $elltimesell$ binary kernels, such that polar codes constructed from these kernels achieve scaling exponent $mu(ell)$ that tends to the optimal value of $2$ as $ell$ grows. We furthermore characterize precisely how large $ell$ needs to be as a function of the gap between $mu(ell)$ and $2$. The resulting binary codes maintain the recursive structure of conventional polar codes, and thereby achieve construction complexity $O(n)$ and encoding/decoding complexity $O(nlog n)$.
In this paper we develop a technique to extend any bound for the minimum distance of cyclic codes constructed from its defining sets (ds-bounds) to abelian (or multivariate) codes through the notion of $mathbb{B}$-apparent distance. We use this techn ique to improve the searching for new bounds for the minimum distance of abelian codes. We also study conditions for an abelian code to verify that its $mathbb{B}$-apparent distance reaches its (true) minimum distance. Then we construct some tables of such codes as an application
Spectral bounds on the minimum distance of quasi-twisted codes over finite fields are proposed, based on eigenvalues of polynomial matrices and the corresponding eigenspaces. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a way similar t o how the Roos and shift bounds extend the BCH and HT bounds for cyclic codes. The eigencodes of a quasi-twisted code in the spectral theory and the outer codes in its concatenated structure are related. A comparison based on this relation verifies that the Jensen bound always outperforms the spectral bound under special conditions, which yields a similar relation between the Lally and the spectral bounds. The performances of the Lally, Jensen and spectral bounds are presented in comparison with each other.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا