In this paper we develop a technique to extend any bound for the minimum distance of cyclic codes constructed from its defining sets (ds-bounds) to abelian (or multivariate) codes through the notion of $mathbb{B}$-apparent distance. We use this technique to improve the searching for new bounds for the minimum distance of abelian codes. We also study conditions for an abelian code to verify that its $mathbb{B}$-apparent distance reaches its (true) minimum distance. Then we construct some tables of such codes as an application
In this paper we develop a technique to extend any bound for cyclic codes constructed from its defining sets (ds-bounds) to abelian (or multivariate) codes. We use this technique to improve the searching of new bounds for abelian codes.
Spectral bounds on the minimum distance of quasi-twisted codes over finite fields are proposed, based on eigenvalues of polynomial matrices and the corresponding eigenspaces. They generalize the Semenov-Trifonov and Zeh-Ling bounds in a way similar t
o how the Roos and shift bounds extend the BCH and HT bounds for cyclic codes. The eigencodes of a quasi-twisted code in the spectral theory and the outer codes in its concatenated structure are related. A comparison based on this relation verifies that the Jensen bound always outperforms the spectral bound under special conditions, which yields a similar relation between the Lally and the spectral bounds. The performances of the Lally, Jensen and spectral bounds are presented in comparison with each other.
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Ma
th. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
The distance distribution of a code is the vector whose $i^text{th}$ entry is the number of pairs of codewords with distance $i$. We investigate the structure of the distance distribution for cyclic orbit codes, which are subspace codes generated by
the action of $mathbb{F}_{q^n}^*$ on an $mathbb{F}_q$-subspace $U$ of $mathbb{F}_{q^n}$. We show that for optimal full-length orbit codes the distance distribution depends only on $q,,n$, and the dimension of $U$. For full-length orbit codes with lower minimum distance, we provide partial results towards a characterization of the distance distribution, especially in the case that any two codewords intersect in a space of dimension at most 2. Finally, we briefly address the distance distribution of a union of optimal full-length orbit codes.
Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions ov
er finite fields and presented ten open problems on cyclic codes from highly nonlinear functions. In this paper, we consider two open problems involving the inverse APN functions $f(x)=x^{q^m-2}$ and the Dobbertin APN function $f(x)=x^{2^{4i}+2^{3i}+2^{2i}+2^{i}-1}$. From the calculation of linear spans and the minimal polynomials of two sequences generated by these two classes of APN functions, the dimensions of the corresponding cyclic codes are determined and lower bounds on the minimum weight of these cyclic codes are presented. Actually, we present a framework for the minimal polynomial and linear span of the sequence $s^{infty}$ defined by $s_t=Tr((1+alpha^t)^e)$, where $alpha$ is a primitive element in $GF(q)$. These techniques can also be applied into other open problems in cite{D}.